

D-MATH Exam Probability Theory 01-3601-00S

Last NameFirst NameLegi-Nr.XX-000-000XX-000-000Exam-No.000

Please do not turn the page yet!

Please take note of the information on the answer-booklet.

Question 1

[11 Points] Let $(X_i)_{i\geq 1}$ be a sequence of i.i.d. random variables following the uniform distribution on [0, 1].

- (1) [3 Points] State the Borel-Cantelli lemmas.
- (2) [3 Points] Fix $\varepsilon \in (0, 1)$. Show that almost surely there exists an integer $m \ge 1$ such that $X_m \ge 1 \varepsilon$.
- (3) [2 Points] Show that $\max(X_1, \ldots, X_n)$ converges almost surely to 1 as $n \to \infty$.
- (4) [3 Points] Is it true that $\max(X_1, \ldots, X_n)$ converges in L^1 to 1 as $n \to \infty$? Justify your answer.

ETH zürich

Question 2

[9 Points] Let E be a non-empty set. Let C be a non-empty collection of subsets of E. We say that C is a monotone class if the following two properties are satisfied:

(i) for every sequence $(A_i)_{i\geq 1}$ of elements of \mathcal{C} such that $A_i \subset A_{i+1}$ for every $i \geq 1$ we have $\bigcup_{i=1}^{\infty} A_i \in \mathcal{C}$; (ii) for every sequence $(A_i)_{i\geq 1}$ of elements of \mathcal{C} such that $A_{i+1} \subset A_i$ for every $i \geq 1$ we have $\bigcap_{i=1}^{\infty} A_i \in \mathcal{C}$.

(1) [3 Points] Assume that \mathcal{C} is a monotone class which is stable by complementation (that is, if $A \in \mathcal{C}$, then $A^c \in \mathcal{C}$) and stable by finite unions (that is, for every $n \ge 1$, if $A_1, \ldots, A_n \in \mathcal{C}$, then $A_1 \cup A_2 \cup \cdots \cup A_n \in \mathcal{C}$). Show that \mathcal{C} is a σ -field.

Let \mathcal{D} be a non-empty collection of subsets of E.

(2) [2 Points] Assume that \mathcal{D} is a Dynkin system. Show that for $A, B \in \mathcal{D}$ such that $A \subset B$ we have $B \setminus A \in \mathcal{D}$.

Hint. Write $B \setminus A = (B^c \cup A)^c$.

- (3) [3 Points] Assume that \mathcal{D} is a Dynkin system. Show that \mathcal{D} is a monotone class.
- (4) [1 Point] Give an example of a monotone class which is not a Dynkin system.

Question 3

[13 Points] Let $(X_i)_{i \ge 1}$ be a sequence of i.i.d. random variables following the uniform distribution on [0, 1].

- (1) [5 Points] Show that $n \min(X_1, \ldots, X_n)$ converges in distribution to a random variable Z when $n \to \infty$ and give the law of Z.
- (2) [4 Points] Show that

$$(X_1 + \dots + X_n) \min(X_1, \dots, X_n) \xrightarrow[n \to \infty]{(d)} Z/2.$$

- (3) [1 Point] Compute the variance of X_1 .
- (4) [3 Points] Show that the sequence of random variables

$$\frac{1}{\sqrt{n}} \cdot \frac{X_1 + \dots + X_n}{2(X_1 + \dots + X_n) - n}$$

converges in distribution as $n \to \infty$.

Question 4

[14 Points]

Set $X_0 = 0$ and let $(X_n)_{n \ge 1}$ be i.i.d. real-valued standard Gaussian $\mathcal{N}(0, 1)$ random variables. For $i \ge 1$, we set

$$Y_i = \frac{X_i - X_{i-1}}{i}.$$

For $n \ge 0$, we define $\mathcal{F}_n = \sigma(X_i, i \le n)$, as well as

$$S_n = \sum_{i=1}^n Y_i, \qquad T_n = S_n - \frac{X_n}{n+1}.$$

(1) [1 Point] Find a sequence $(u_i)_{i\geq 1}$ of positive real numbers such that for every $n\geq 0$ we have

$$T_n = \sum_{i=1}^n u_i X_i.$$

- (2) [4 Points] Show that $(T_n)_{n\geq 0}$ is a $(\mathcal{F}_n)_{n\geq 0}$ martingale.
- (3) [2 Points] Show that $(T_n)_{n\geq 0}$ is bounded in L^2 .
- (4) [3 Points] Show that $(T_n)_{n\geq 0}$ converges almost surely, in L^1 and in L^2 .
- (5) [1 Point] Show that for every x > 0 we have $\mathbb{P}(|X_1| \ge x) \le \frac{2}{x\sqrt{2\pi}}e^{-x^2/2}$.

Hint. Use $\int_x^\infty e^{-t^2/2} dt \le \int_x^\infty \frac{t}{x} e^{-t^2/2} dt$.

(6) [3 Points] Show that $(S_n)_{n\geq 0}$ converges almost surely, in L^1 and in L^2 .

Intentionally blank page