PROBABILITY THEORY (D-MATH) EXERCISE SHEET 1

Exercise 1. This exercise shows that a simple random walk on \mathbb{Z} cannot be confined to a strip forever. Let $(X_n)_{n\geq 1}$ be an iid sequence of random variables defined by

$$P(X_1 = 1) = P(X_1 = -1) = 1/2.$$

For $n \ge 1$, define $S_n = X_1 + \dots + X_n$. Let $k \ge 1$ be a fixed integer. Show that $P(\forall n \ge 1 \ 0 \le S_n \le k) = 0.$

Exercise 2 [R]. Let $(X_n)_{n\geq 1}$ be an iid sequence of random variables uniformly distributed in $\{-1, 1, 2, -2\}$. For $n \geq 1$, let $S_n = X_1 + \cdots + X_n$. Fix $n \geq 1$.

- (i) Compute $E(S_n)$ and $Var(S_n)$.
- (ii) Prove that

$$\mathbf{P}(|S_n| \ge 2\sqrt{n}) \le \frac{3}{4}.$$

(iii) Prove that

$$\forall k \in \mathbb{Z} \quad \mathcal{P}(S_n = k) = \mathcal{P}(S_n = -k).$$

(iv) Prove hat

$$\forall k \in \mathbb{Z} \quad \mathcal{P}(X_1 + \dots + X_n = k) = \mathcal{P}(X_{n+1} + \dots + X_{2n} = k).$$

(v) Deduce that

$$\forall k \in \mathbb{Z} \quad \mathcal{P}(S_{2n} = k) = \sum_{i \in \mathbb{Z}} \mathcal{P}(S_n = i) \cdot \mathcal{P}(S_n = k - i).$$

(vi) Apply the Cauchy-Schwarz inequality to show that

$$\forall k \in \mathbb{Z} \quad \mathcal{P}(S_{2n} = k) \le \mathcal{P}(S_{2n} = 0).$$

(vii) Deduce that

$$\mathcal{P}(S_{2n}=0) \ge \frac{1}{50\sqrt{n}}$$

Exercise 3. Let $(X_n)_{n\geq 1}$ be iid Exp(1) random variables. Show that

$$\limsup_{n \to \infty} \frac{X_n}{\log n} = 1 \quad a.s.$$

Exercise 4. Let $(A_n)_{n\geq 1}$ be a sequence of events such that

$$\lim_{n \to \infty} \mathcal{P}(A_n) = 0 \text{ and } \sum_{n \ge 1} \mathcal{P}(A_n \setminus A_{n+1}) < \infty.$$

Prove that $P(infinitely many A_n occur) = 0.$

Submission of solutions. Hand in your solutions by 18:00, 27/09/2024 following the instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/

Note that only the exercises marked with [R] will be corrected.