Prof. Vincent Tassion HS 2024

PROBABILITY THEORY (D-MATH)
EXERCISE SHEET 1 — SOLUTION

Exercise 1. This exercise shows that a simple random walk on Z cannot be confined to
a strip forever. Let (X,,),>1 be an iid sequence of random variables defined by

P(X;=1)=P(X;=-1)=1/2
For n > 1, define S,, = X; +---+ X,,. Let £ > 1 be a fixed integer. Show that
P(Vn>10<5,<k)=0.

Solution. For each i > 1 define
A = { Xoipy1 = Xonpto = -+ = Xoigprrr = 1}
We claim that for all 7 > 1,
A;c{vn>10<5,<k}"
To check this, let w € A;. We show that then w € {Vn>1 0< 5, < k:}c. If Sori(w) <0,
then we are done, and if Sox;(w) > 0, then
Sokivkr1 = Soki + Xoikr1 + -+ Xoigrrpr = K+ 1,
which proves the claim. So we have {¥n>1 0< S, < k} C A¢, and so
{(Vn>10<8, <k} ()AL
1>1

We show that P(N;>14;) = 0, which would complete the proof. To see this, first note that
by independence of (X,,) we have

Vi>1 P(A) = (1/2)*

Next, observe that, by construction, (A;);>; are independent events, so for all n > 1 we
have N
P(ﬂAg) = (1—(1/2)FY).
i=1

Therefore,

P(ﬂA,‘j) = 7111301013<ﬂ,45> =0,
i>1 i=1
as desired.



Exercise 2 [R]. Let (X,,),>1 be an iid sequence of random variables uniformly distributed
in {-1,1,2,-2}. Forn>1,let S, = X;+---+ X,,. Fixn > 1.

Solution.

(i) Compute E(S,) and Var(S,).
(ii) Prove that

(iii) Prove that

(iv) Provethat
VkeZ PXi+ -+ X,=k) =PXpp1+ -+ Xo, = k).
(v) Deduce that

Vk€Z P(Sy=k)=> P(S, P(S, =k —1i).

1€EZ

(vi) Apply the Cauchy-Schwarz inequality to show that
Vk €Z P(Son = k) < P(Sa = 0).

(vii) Deduce that
1

P(Sn = 0) 2 75~

Solution.

(i) Since X; is symmetric, E(X;) = 0. So, by linearity, we have
E(S,) =E(X;)+ -+ E(X,) =0.

We compute Var(X;) = E(X;)? — E(X;)? = 5/2. Since (X,,) are independent, we
have

Var(S,) = Var(X;) + - + Var(X,,) = 5n/2.

(ii) By Chebyshev’s inequality, we have

P(|S,| > 2v/n) < (5”/2) < 3/4.

(iii) Define a sequence of random variables (Y;);>1 by Y; = —X,;. Observe that (Y;)n>1
has the same distribution as (X;);>1. So

VkeZ PXi+--+X,=k)=PY1+---+Y,=k)=P(X;+---+ X, =—k)

(iv) This time define a sequence of random variables (Y;);>1 by ¥; = X,,1;. Again, (Y;),>1
has the same distribution as (X;);>1, so

VEeZ PXi+--+X,=k)=PY1+---+Y,=k) =P(Xpp+ -+ X0, =k).



(v) Fix k € Z. We have

P(Say, = k) :P(U{Sn:i,Sgn—Sn:k—i}>

i€z
(the union is disjoint) =Y P(S, = 4,85, — S, =k — i)
i€z
(S, and Sy, — S, are ind.) = ZP(Sn =1)-P(Xpp1+- -+ Xon=k—1)
i€z
(part iv) ZP w=1) -P(S, =k —1).
1€EL
(vi) We have
P(Sy, = k) = ZP P(S, =k —1i) (partv)
1€EL
1/2 1/2
(Cauchy-Schwarz) < (Z P(S, = 2)2) (Z P(S, =k — 2)2)
icz i€z
1/2 1/2
(Z=k-7) = (Zp(sn = z‘)?) (Zp(sn - 2)2)
i€z i€t
=> P(S,=1)
i€Z
(part iii) =) P(S, =)P(S, = —i)
i€z

(part v) = P(Sy, =0).
(vii) Using part (ii) we have P(|S2,| € [-2v/2n,2v2n]) =1 — P(|S,| > 2/n) > 1/4. Let
= [-2v2n,2V2n] N Z.

Then we have

1/4 < P(S, € 1)

(the union is disjoint) = Z P(S, =1)

(part vi) < |I|-P(Sy, =0)

(] <10vn) < 10v/n-P(S3, = 0).
So

1 1
P(S,, =0) > > ,
(5 )—40\/5 50¢/n

which completes the proof.



Exercise 3. Let (X,,),>1 be iid Exp(1) random variables. Show that

lim sup =1 a.s.

n—oo 10gM
Solution. Let € > 0 be arbitrary. For n > 1, define the events

A, ={X,>1+e¢e)logn} and B, ={X,>(1—-¢)logn}.

First, note that
D> P(4,) =) 1/n' < oo,

n>1 n>1
so by the first Borel-Cantelli lemma, only finitely many of the A,’s occur almost surely.

Second, we have that
Y P(B,) =) 1/n' =00

n>1 n>1
Since the B,’s are independent, the second Borel-Cantelli lemma implies that infintely
many of the B,’s occur. So, we get

n

lim sup €[l—el+€ as.

n—oo lOgMN

Now, we take a countable sequence €, — 0 to complete the proof. More precisely, we get
for all k£ > 1,

X
P ( lim sup ]

n—oo 108

- e [1—1/k,1+1/k]> —1,

which implies

. Xn
P(ﬂhmsup1 —efl- 1/k,1+1/k]) =1

This completes the proof because event in the display above is the same as
{limsup X,,/logn = 1}.

n—o0



Exercise 4. Let (A,)n>1 be a sequence of events such that

lim P(4,) =0and » P(A,\ Ay) < 0.

n—00
n>1

Prove that P(infinitely many A, occur) = 0.

Solution.
We want to show that

P(ﬂ UAm)zggoP(UAm):o.

n>1m>n m>n

We claim that

UAmC(UAm\Am+1)U(U ﬂAk) (1)

m>n m>n m>n k>m
To show this, let w € Up>nAy but w € NpsnAp \ Amyr. Let m’ > n be such that
w € Apy. Since w ¢ A,y \ Apryq, we must have w € A,y 1. Continuing like this, we get
inductively that w € Ay, for all kK > m/. This shows w € Ng>py Ak, which proves the claim.
Next, observe that for each m > n
P( N Ak) =0.

k>m
since [, Ax is contained in each of the (Ay)i>m and P(Ay) — 0. So
P( U N Ak) =0,
m>n k>m
as well. Using this and union bound in (1) we obtain
P( U Am) < ZP(Ak \ Agi1),
m>n k>n

which converges to 0 as n — oo since ) -, P(A, \ An11) < oo by assumption. This
completes the proof.
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