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PROBABILITY THEORY (D-MATH)
EXERCISE SHEET 1 – SOLUTION

Exercise 1. This exercise shows that a simple random walk on Z cannot be confined to
a strip forever. Let (Xn)n≥1 be an iid sequence of random variables defined by

P(X1 = 1) = P(X1 = −1) = 1/2.

For n ≥ 1, define Sn = X1 + · · ·+Xn. Let k ≥ 1 be a fixed integer. Show that
P
(
∀n ≥ 1 0 ≤ Sn ≤ k

)
= 0.

Solution. For each i ≥ 1 define
Ai = {X2ik+1 = X2nk+2 = · · · = X2ik+k+1 = 1}.

We claim that for all i ≥ 1,
Ai ⊂ {∀n ≥ 1 0 ≤ Sn ≤ k

}c
.

To check this, let ω ∈ Ai. We show that then ω ∈ {∀n ≥ 1 0 ≤ Sn ≤ k
}c. If S2ki(ω) < 0,

then we are done, and if S2ki(ω) ≥ 0, then
S2ki+k+1 = S2ki +X2ik+1 + · · ·+X2ik+k+1 ≥ k + 1,

which proves the claim. So we have {∀n ≥ 1 0 ≤ Sn ≤ k
}
⊂ Ac

i , and so

{∀n ≥ 1 0 ≤ Sn ≤ k
}
⊂

⋂
i≥1

Ac
i .

We show that P(∩i≥1Ai) = 0, which would complete the proof. To see this, first note that
by independence of (Xn) we have

∀i ≥ 1 P(Ai) = (1/2)k+1.

Next, observe that, by construction, (Ai)i≥1 are independent events, so for all n ≥ 1 we
have

P

( n⋂
i=1

Ac
i

)
= (1− (1/2)k+1)n.

Therefore,

P

(⋂
i≥1

Ac
i

)
= lim

n→∞
P

( n⋂
i=1

Ac
i

)
= 0,

as desired.
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Exercise 2 [R]. Let (Xn)n≥1 be an iid sequence of random variables uniformly distributed
in {−1, 1, 2,−2}. For n ≥ 1, let Sn = X1 + · · ·+Xn. Fix n ≥ 1.
Solution.

(i) Compute E(Sn) and Var(Sn).
(ii) Prove that

P(|Sn| ≥ 2
√
n) ≤ 3

4
.

(iii) Prove that

∀k ∈ Z P(Sn = k) = P(Sn = −k).

(iv) Provethat

∀k ∈ Z P(X1 + · · ·+Xn = k) = P(Xn+1 + · · ·+X2n = k).

(v) Deduce that

∀k ∈ Z P(S2n = k) =
∑
i∈Z

P(Sn = i) · P(Sn = k − i).

(vi) Apply the Cauchy-Schwarz inequality to show that

∀k ∈ Z P(S2n = k) ≤ P(S2n = 0).

(vii) Deduce that

P(S2n = 0) ≥ 1

50
√
n
.

Solution.

(i) Since X1 is symmetric, E(X1) = 0. So, by linearity, we have

E(Sn) = E(X1) + · · ·+ E(Xn) = 0.

We compute Var(X1) = E(X1)
2 − E(X1)

2 = 5/2. Since (Xn) are independent, we
have

Var(Sn) = Var(X1) + ·+Var(Xn) = 5n/2.

(ii) By Chebyshev’s inequality, we have

P(|Sn| ≥ 2
√
n) ≤ (5n/2)

4n
≤ 3/4.

(iii) Define a sequence of random variables (Yi)i≥1 by Yi = −Xi. Observe that (Yi)n≥1

has the same distribution as (Xi)i≥1. So

∀k ∈ Z P(X1 + · · ·+Xn = k) = P(Y1 + · · ·+ Yn = k) = P(X1 + · · ·+Xn = −k)

(iv) This time define a sequence of random variables (Yi)i≥1 by Yi = Xn+i. Again, (Yi)n≥1

has the same distribution as (Xi)i≥1, so

∀k ∈ Z P(X1 + · · ·+Xn = k) = P(Y1 + · · ·+ Yn = k) = P(Xn+1 + · · ·+X2n = k).
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(v) Fix k ∈ Z. We have

P(S2n = k) = P

(⋃
i∈Z

{Sn = i, S2n − Sn = k − i}
)

(the union is disjoint) =
∑
i∈Z

P(Sn = i, S2n − Sn = k − i)

(Sn and S2n − Sn are ind.) =
∑
i∈Z

P(Sn = i) · P(Xn+1 + · · ·+X2n = k − i)

(part iv) =
∑
i∈Z

P(Sn = i) · P(Sn = k − i).

(vi) We have

P(S2n = k) =
∑
i∈Z

P(Sn = i) · P(Sn = k − i) (part v)

(Cauchy-Schwarz) ≤
(∑

i∈Z

P(Sn = i)2
)1/2(∑

i∈Z

P(Sn = k − i)2
)1/2

(Z = k − Z) =

(∑
i∈Z

P(Sn = i)2
)1/2(∑

i∈Z

P(Sn = i)2
)1/2

=
∑
i∈Z

P(Sn = i)2

(part iii) =
∑
i∈Z

P(Sn = i)P(Sn = −i)

(part v) = P(S2n = 0).

(vii) Using part (ii) we have P
(
|S2n| ∈ [−2

√
2n, 2

√
2n]

)
= 1− P(|Sn| > 2

√
n) ≥ 1/4. Let

I = [−2
√
2n, 2

√
2n] ∩ Z.

Then we have

1/4 ≤ P(Sn ∈ I)

= P

(⋃
i∈I

Sn = i

)
(the union is disjoint) =

∑
i∈I

P(Sn = i)

(part vi) ≤ |I| · P(S2n = 0)(
|I| ≤ 10

√
n
)

≤ 10
√
n · P(S2n = 0).

So
P(S2n = 0) ≥ 1

40
√
n
>

1

50
√
n
,

which completes the proof.
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Exercise 3. Let (Xn)n≥1 be iid Exp(1) random variables. Show that

lim sup
n→∞

Xn

log n
= 1 a.s.

Solution. Let ϵ > 0 be arbitrary. For n ≥ 1, define the events

An = {Xn ≥ (1 + ϵ) log n} and Bn = {Xn ≥ (1− ϵ) log n}.
First, note that ∑

n≥1

P(An) =
∑
n≥1

1/n1+ϵ < ∞,

so by the first Borel-Cantelli lemma, only finitely many of the An’s occur almost surely.
Second, we have that ∑

n≥1

P(Bn) =
∑
n≥1

1/n1−ϵ = ∞.

Since the Bn’s are independent, the second Borel-Cantelli lemma implies that infintely
many of the Bn’s occur. So, we get

lim sup
n→∞

Xn

log n
∈ [1− ϵ, 1 + ϵ] a.s.

Now, we take a countable sequence ϵk → 0 to complete the proof. More precisely, we get
for all k ≥ 1,

P

(
lim sup
n→∞

Xn

log n
∈ [1− 1/k, 1 + 1/k]

)
= 1,

which implies

P

( ⋂
k≥1

lim sup
n→∞

Xn

log n
∈ [1− 1/k, 1 + 1/k]

)
= 1.

This completes the proof because event in the display above is the same as
{lim sup

n→∞
Xn/ log n = 1}.
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Exercise 4. Let (An)n≥1 be a sequence of events such that

lim
n→∞

P(An) = 0 and
∑
n≥1

P(An \ An+1) < ∞.

Prove that P(infinitely many An occur) = 0.
Solution.

We want to show that

P

( ⋂
n≥1

⋃
m≥n

Am

)
= lim

n→∞
P

( ⋃
m≥n

Am

)
= 0.

We claim that ⋃
m≥n

Am ⊂
( ⋃

m≥n

Am \ Am+1

)
∪
( ⋃

m≥n

⋂
k≥m

Ak

)
. (1)

To show this, let ω ∈ ∪m≥nAm but ω /∈ ∩m≥nAm \ Am+1. Let m′ ≥ n be such that
ω ∈ Am′ . Since ω /∈ Am′ \ Am′+1, we must have ω ∈ Am′+1. Continuing like this, we get
inductively that ω ∈ Ak for all k ≥ m′. This shows ω ∈ ∩k≥m′Ak, which proves the claim.
Next, observe that for each m ≥ n

P

( ⋂
k≥m

Ak

)
= 0.

since
⋂

k≥n Ak is contained in each of the (Ak)k≥m and P(Ak) → 0. So

P

( ⋃
m≥n

⋂
k≥m

Ak

)
= 0,

as well. Using this and union bound in (1) we obtain

P

( ⋃
m≥n

Am

)
≤

∑
k≥n

P(Ak \ Ak+1),

which converges to 0 as n → ∞ since
∑

n≥1 P(An \ An+1) < ∞ by assumption. This
completes the proof.
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