PROBABILITY THEORY (D-MATH) EXERCISE SHEET 10

Exercise 1. [R] Let A be an compact set in \mathbb{R}^2 and let $(X, Y) \sim \text{Unif}(A)$. Compute $\mathrm{E}(X^2|Y)$

in the following cases:

(1) $A = [-1, 1]^2,$ (2) $A = \{(x, y) : |x| + |y| \le 1\}.$

Exercise 2. Let X, Y be independent random variables and let $\psi : \mathbb{R}^2 \to \mathbb{R}_{\geq 0}$ be a measurable function such that

$$\mathrm{E}\big(|\psi(X,Y)|\big) < \infty$$

Define $\phi : \mathbb{R} \to [0, \infty]$ by

$$\phi(y) = \mathcal{E}\big(\psi(X, y)\big).$$

Show that

$$E(\psi(X,Y)|Y) = \phi(Y) \ a.s$$

Exercise 3. [R] Let $(Y_n)_{n\geq 1}$ be iid random variables which are uniform in $\{-1, +1\}$ and let X be a random variable in L^2 . Let [n] denote $\{1, \ldots, n\}$ and for a subset $S \subset [n]$, define

$$Y_S = \prod_{i \in S} Y_i,$$

where Y_{\emptyset} defined to be 1.

(1) Show that $E(X|Y_1) = E(X) + E(XY_1)Y_1$.

(2) More generally, for all $n \ge 1$ show that

$$\mathbf{E}(X|Y_1,\ldots,Y_n) = \sum_{S \subset [n]} \mathbf{E}(XY_S)Y_S.$$

Exercise 4. [R] Let X be a real-valued random variable defined on (Ω, \mathcal{F}, P) that takes values in $[0, \infty]$ a.s. Let $\mathcal{G} \subset \mathcal{F}$ be a sigma-algebra. Define $E(X|\mathcal{G})$ and show that it is unique (up to almost sure equivalence).

Submission of solutions. Hand in your solutions by 18:00, 29/11/2024 following the instructions on the course website

 $\tt https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/$

Note that only the exercises marked with [R] will be corrected.

1