PROBABILITY THEORY (D-MATH) EXERCISE SHEET 10 – SOLUTION

Exercise 1. [R] Let A be an compact set in \mathbb{R}^2 and let $(X, Y) \sim \text{Unif}(A)$. Compute $\mathrm{E}(X^2|Y)$

in the following cases:

 $\begin{array}{ll} (1) \ A = [-1,1]^2, \\ (2) \ A = \{(x,y): |x|+|y|\leq 1\}. \end{array}$

Solution.

(1) In this case, X and Y are independent Unif[-1, 1] random variables. So

$$E(X^2|Y) = E(X^2) = \int_{-1}^{1} x^2/2 \, dx = 1/3.$$

(2) In this case, (X, Y) has density given by

$$f_{(X,Y)}(x,y) = \frac{1_{|x|+|y|\leq 1}}{2}.$$

Therefore, the marginal density of y is given by

$$f_Y(y) = 1_{|y| \le 1} \int_{|y|-1}^{1-|y|} 1/2 \ dy = (1-|y|) 1_{|y| \le 1}.$$

We compute the conditional expectation as in section 5 of chapter 10. Let $y \in [-1, 1]$. We get

$$\begin{split} \phi(y) &= \int_{-1}^{1} \frac{x^2 \mathbf{1}_{|x|+|y| \leq 1}}{2(1-|y|)} \, dx \\ &= \frac{1}{2(1-|y|)} \int_{|y|-1}^{1-|y|} x^2 \, dx \\ &= \frac{(1-|y|)^2}{3}. \end{split}$$

 So

$$E(X^2|Y) = \frac{(1-|Y|)^2}{3}$$
 a.s.

Exercise 2. Let X, Y be independent random variables and let $\psi : \mathbb{R}^2 \to \mathbb{R}_{\geq 0}$ be a measurable function such that

$$\mathrm{E}\big(|\psi(X,Y)|\big) < \infty.$$

Define $\phi : \mathbb{R} \to [0, \infty]$ by

$$\phi(y) = \mathcal{E}\big(\psi(X, y)\big).$$

Show that

 $E(\psi(X,Y)|Y) = \phi(Y) \ a.s.$

Solution. First, since $\phi(y) = \int_{\mathbb{R}} \psi(x, y) \mu_X(dx)$, ϕ is a measurable function (this is part of Fubini's theorem). Hence, h(Y) is $\sigma(Y)$ -measurable. Therefore, it suffices to check that for every non-negative random variable Z which is $\sigma(Y)$ -measurable, we have

$$\mathrm{E}\big(\psi(X,Y)Z\big) = \mathrm{E}\big(\phi(Y)Z\big).$$

To this end, using Fubini's theorem we get

$$\begin{split} \mathbf{E}\big(\psi(X,Y)Z\big) &= \int_{\mathbb{R}\times\mathbb{R}\times\mathbb{R}_{\geq 0}} \psi(x,y) z\mu_{(X,Y,Z)}(dxdydz) \\ \text{e independent}\big) &= \int_{\mathbb{R}\times\mathbb{R}\times\mathbb{R}_{\geq 0}} \psi(x,y) z\mu_X(dx)\mu_{(Y,Z)}(dydz) \\ &= \int_{\mathbb{R}\times\mathbb{R}_{\geq 0}} z\Big(\int_{\mathbb{R}} \psi(x,y)\mu_X(dx)\Big)\mu_{(Y,Z)}(dydz) \\ &= \int_{\mathbb{R}\times\mathbb{R}_{\geq 0}} z\phi(y)\mu_{(Y,Z)}(dydz) \\ &= \mathbf{E}(\phi(Y)Z). \end{split}$$

(because X and (Y, Z) are independent)

Exercise 3. [R] Let $(Y_n)_{n\geq 1}$ be iid random variables which are uniform in $\{-1, +1\}$ and let X be a random variable in L^2 . Let [n] denote $\{1, \ldots, n\}$ and for a subset $S \subset [n]$, define

$$Y_S = \prod_{i \in S} Y_i,$$

where Y_{\emptyset} defined to be 1.

(1) Show that $E(X|Y_1) = E(X) + E(XY_1)Y_1$.

(2) More generally, for all $n \ge 1$ show that

$$E(X|Y_1,\ldots,Y_n) = \sum_{S \subset [n]} E(XY_S)Y_S.$$

Solution. We use the notation $Y = (Y_1, \ldots, Y_n)$. We prove the general formula using the L^2 projection interpretation of conditional expectation, which is applicable because we assume that $X \in L^2$. Let

$$\mathcal{F}=\sigma(Y_1,\ldots,Y_n)$$

and let $\mathcal{H}_{\mathcal{F}}$ be the vector space of \mathcal{F} -measurable random variables in L^2 . We first establish that $\mathcal{H}_{\mathcal{F}}$ has dimension at most 2^n . Consider the random variables

$$\{y \in \{-1,1\}^n : 1_{Y=y}\}.$$

Being a functions of Y and bounded, these random variables are in $H_{\mathcal{G}}$. We show that they span $\mathcal{H}_{\mathcal{F}}$. Let Z be a \mathcal{F} -measurable random variable in L^2 . Then we know that there exists a measurable function $f : \mathbb{R}^n \to \mathbb{R}$ such that

$$Z = f(Y_1, \ldots, Y_n).$$

But now

$$f(Y_1, \dots, Y_n) = \sum_{y \in \{-1,1\}^n} f(y) \mathbb{1}_{Y=y}$$

This shows that the dimension of $H_{\mathcal{F}}$ is at most 2^n . Next, we claim that

$$\{S \subset [n] : Y_S\}$$

is an orthonormal basis of $H_{\mathcal{F}}$. First, since $Y_S \in \{-1, 1\}$ we have $E(Y_S^2) = 1$. Next let R, S be distinct subsets of [n]. Then

$$\mathbf{E}(Y_R Y_S) = \mathbf{E}(Y_{R\Delta S}) = \mathbf{E}\left(\prod_{k \in R\Delta S} Y_k\right) = \prod_{k \in R\Delta S} \mathbf{E}(Y_k) = 0,$$

where we used independence in the second last inequality, and the facts that $R\Delta S \neq \emptyset$ and $E(Y_k) = 0$ for all k in the last. This shows orthonormality. Since we have 2^n such functions, they form a basis. So finally, the formula we wanted to show is just the projection formula with respect to this orthonormal basis. **Exercise 4.** [R] Let X be a real-valued random variable defined on (Ω, \mathcal{F}, P) that takes values in $[0, \infty]$ a.s. Let $\mathcal{G} \subset \mathcal{F}$ be a sigma-algebra. Define $E(X|\mathcal{G})$ and show that it is unique (up to almost sure equivalence).

Solution. Refer to section 7 of chapter 10.