PROBABILITY THEORY (D-MATH) EXERCISE SHEET 10 – SOLUTION

Exercise 1. [R] Let A be an compact set in \mathbb{R}^2 and let $(X, Y) \sim \text{Unif}(A)$. Compute $E(X^2|Y)$

in the following cases:

 (1) $A = [-1, 1]^2$, (2) $A = \{(x, y) : |x| + |y| \le 1\}.$

Solution.

(1) In this case, X and Y are independent Unif $[-1, 1]$ random variables. So

$$
E(X2|Y) = E(X2) = \int_{-1}^{1} x2/2 dx = 1/3.
$$

(2) In this case, (X, Y) has density given by

$$
f_{(X,Y)}(x,y) = \frac{1_{|x|+|y|\leq 1}}{2}.
$$

Therefore, the marginal density of y is given by

$$
f_Y(y) = 1_{|y| \le 1} \int_{|y|-1}^{1-|y|} 1/2 \, dy = (1-|y|) 1_{|y| \le 1}.
$$

We compute the conditional expectation as in section 5 of chapter 10. Let $y \in [-1, 1]$. We get

$$
\phi(y) = \int_{-1}^{1} \frac{x^2 1_{|x|+|y|\leq 1}}{2(1-|y|)} dx
$$

=
$$
\frac{1}{2(1-|y|)} \int_{|y|-1}^{1-|y|} x^2 dx
$$

=
$$
\frac{(1-|y|)^2}{3}.
$$

So

$$
E(X2|Y) = \frac{(1-|Y|)^{2}}{3} \quad a.s.
$$

Exercise 2. Let X, Y be independent random variables and let $\psi : \mathbb{R}^2 \to \mathbb{R}_{\geq 0}$ be a measurable function such that

$$
\mathrm{E}\big(|\psi(X,Y)|\big)<\infty.
$$

Define $\phi : \mathbb{R} \to [0, \infty]$ by

$$
\phi(y) = \mathcal{E}(\psi(X, y)).
$$

Show that

 $E(\psi(X, Y)|Y) = \phi(Y)$ a.s.

Solution. First, since $\phi(y) = \int_{\mathbb{R}} \psi(x, y) \mu_X(dx)$, ϕ is a measurable function (this is part of Fubini's theorem). Hence, $h(Y)$ is $\sigma(Y)$ -measurable. Therefore, it suffices to check that for every non-negative random variable Z which is $\sigma(Y)$ -measurable, we have

$$
E(\psi(X,Y)Z) = E(\phi(Y)Z).
$$

To this end, using Fubini's theorem we get

$$
E(\psi(X, Y)Z) = \int_{\mathbb{R} \times \mathbb{R} \times \mathbb{R}_{\geq 0}} \psi(x, y) z \mu_{(X, Y, Z)}(dx dy dz)
$$

e independent)
$$
= \int_{\mathbb{R} \times \mathbb{R} \times \mathbb{R}_{\geq 0}} \psi(x, y) z \mu_X(dx) \mu_{(Y, Z)}(dy dz)
$$

$$
= \int_{\mathbb{R} \times \mathbb{R}_{\geq 0}} z \left(\int_{\mathbb{R}} \psi(x, y) \mu_X(dx) \right) \mu_{(Y, Z)}(dy dz)
$$

$$
= \int_{\mathbb{R} \times \mathbb{R}_{\geq 0}} z \phi(y) \mu_{(Y, Z)}(dy dz)
$$

$$
= E(\phi(Y)Z).
$$

(because X and (Y, Z) are

Exercise 3. [R] Let $(Y_n)_{n>1}$ be iid random variables which are uniform in $\{-1, +1\}$ and let X be a random variable in L^2 . Let $[n]$ denote $\{1, \ldots, n\}$ and for a subset $S \subset [n]$, define

$$
Y_S = \prod_{i \in S} Y_i,
$$

where Y_{\emptyset} defined to be 1.

(1) Show that $E(X|Y_1) = E(X) + E(XY_1)Y_1$.

(2) More generally, for all $n \geq 1$ show that

$$
E(X|Y_1,\ldots,Y_n)=\sum_{S\subset[n]}E(XY_S)Y_S.
$$

Solution. We use the notation $Y = (Y_1, \ldots, Y_n)$. We prove the general formula using the L^2 projection interpretation of conditional expectation, which is applicable because we assume that $X \in L^2$. Let

$$
\mathcal{F} = \sigma(Y_1, \ldots, Y_n)
$$

and let $\mathcal{H}_{\mathcal{F}}$ be the vector space of \mathcal{F} -measurable random variables in L^2 . We first establish that $\mathcal{H}_{\mathcal{F}}$ has dimension at most 2^n . Consider the random variables

$$
\{y \in \{-1,1\}^n : 1_{Y=y}\}.
$$

Being a functions of Y and bounded, these random variables are in H_G . We show that they span $\mathcal{H}_{\mathcal{F}}$. Let Z be a \mathcal{F} -measurable random variable in L^2 . Then we know that there exists a measurable function $f : \mathbb{R}^n \to \mathbb{R}$ such that

$$
Z = f(Y_1, \ldots, Y_n).
$$

But now

$$
f(Y_1, \ldots, Y_n) = \sum_{y \in \{-1, 1\}^n} f(y) 1_{Y = y}.
$$

This shows that the dimension of $H_{\mathcal{F}}$ is at most 2^n . Next, we claim that

$$
\{S \subset [n] : Y_S\}
$$

is an orthonormal basis of $H_{\mathcal{F}}$. First, since $Y_S \in \{-1,1\}$ we have $E(Y_S^2) = 1$. Next let R, S be distinct subsets of $[n]$. Then

$$
E(Y_R Y_S) = E(Y_{R\Delta S}) = E\left(\prod_{k \in R\Delta S} Y_k\right) = \prod_{k \in R\Delta S} E(Y_k) = 0,
$$

where we used independence in the second last inequality, and the facts that $R\Delta S \neq \emptyset$ and $E(Y_k) = 0$ for all k in the last. This shows orthonormality. Since we have 2^n such functions, they form a basis. So finally, the formula we wanted to show is just the projection formula with respect to this orthonormal basis.

Exercise 4. [R] Let X be a real-valued random variable defined on (Ω, \mathcal{F}, P) that takes values in $[0, \infty]$ a.s. Let $\mathcal{G} \subset \mathcal{F}$ be a sigma-algebra. Define $E(X|\mathcal{G})$ and show that it is unique (up to almost sure equivalence).

Solution. Refer to section 7 of chapter 10.