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PROBABILITY THEORY (D-MATH)
EXERCISE SHEET 10 – SOLUTION

Exercise 1. [R] Let A be an compact set in R2 and let (X, Y ) ∼ Unif(A). Compute

E
(
X2|Y

)
in the following cases:
(1) A = [−1, 1]2,
(2) A = {(x, y) : |x|+ |y| ≤ 1}.

Solution.
(1) In this case, X and Y are independent Unif[−1, 1] random variables. So

E(X2|Y ) = E(X2) =

∫ 1

−1

x2/2 dx = 1/3.

(2) In this case, (X, Y ) has density given by

f(X,Y )(x, y) =
1|x|+|y|≤1

2
.

Therefore, the marginal density of y is given by

fY (y) = 1|y|≤1

∫ 1−|y|

|y|−1

1/2 dy = (1− |y|)1|y|≤1.

We compute the conditional expectation as in section 5 of chapter 10. Let y ∈ [−1, 1].
We get

ϕ(y) =

∫ 1

−1

x21|x|+|y|≤1

2(1− |y|)
dx

=
1

2(1− |y|)

∫ 1−|y|

|y|−1

x2 dx

=
(1− |y|)2

3
.

So
E(X2|Y ) =

(1− |Y |)2

3
a.s.

1



Exercise 2. Let X, Y be independent random variables and let ψ : R2 → R≥0 be a
measurable function such that

E
(
|ψ(X, Y )|

)
<∞.

Define ϕ : R → [0,∞] by
ϕ(y) = E

(
ψ(X, y)

)
.

Show that
E(ψ(X, Y )|Y ) = ϕ(Y ) a.s.

Solution. First, since ϕ(y) =
∫
R ψ(x, y)µX(dx), ϕ is a measurable function (this is part of

Fubini’s theorem). Hence, h(Y ) is σ(Y )-measurable. Therefore, it suffices to check that
for every non-negative random variable Z which is σ(Y )-measurable, we have

E
(
ψ(X, Y )Z

)
= E

(
ϕ(Y )Z

)
.

To this end, using Fubini’s theorem we get

E
(
ψ(X, Y )Z

)
=

∫
R×R×R≥0

ψ(x, y)zµ(X,Y,Z)(dxdydz)

(because X and (Y, Z) are independent) =

∫
R×R×R≥0

ψ(x, y)zµX(dx)µ(Y,Z)(dydz)

=

∫
R×R≥0

z

(∫
R
ψ(x, y)µX(dx)

)
µ(Y,Z)(dydz)

=

∫
R×R≥0

zϕ(y)µ(Y,Z)(dydz)

= E(ϕ(Y )Z).
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Exercise 3. [R] Let (Yn)n≥1 be iid random variables which are uniform in {−1,+1} and
let X be a random variable in L2. Let [n] denote {1, . . . , n} and for a subset S ⊂ [n],
define

YS =
∏
i∈S

Yi,

where Y∅ defined to be 1.
(1) Show that E(X|Y1) = E(X) + E(XY1)Y1.
(2) More generally, for all n ≥ 1 show that

E(X|Y1, . . . , Yn) =
∑
S⊂[n]

E(XYS)YS.

Solution. We use the notation Y = (Y1, . . . , Yn). We prove the general formula using the
L2 projection interpretation of conditional expectation, which is applicable because we
assume that X ∈ L2. Let

F = σ(Y1, . . . , Yn)

and let HF be the vector space of F -measurable random variables in L2. We first establish
that HF has dimension at most 2n. Consider the random variables

{y ∈ {−1, 1}n : 1Y=y}.
Being a functions of Y and bounded, these random variables are in HG. We show that
they span HF . Let Z be a F -measurable random variable in L2. Then we know that
there exists a measurable function f : Rn → R such that

Z = f(Y1, . . . , Yn).

But now
f(Y1, . . . , Yn) =

∑
y∈{−1,1}n

f(y)1Y=y.

This shows that the dimension of HF is at most 2n. Next, we claim that
{S ⊂ [n] : YS}

is an orthonormal basis of HF . First, since YS ∈ {−1, 1} we have E(Y 2
S ) = 1. Next let

R, S be distinct subsets of [n]. Then

E(YRYS) = E(YR∆S) = E

( ∏
k∈R∆S

Yk

)
=

∏
k∈R∆S

E(Yk) = 0,

where we used independence in the second last inequality, and the facts that R∆S ̸= ∅
and E(Yk) = 0 for all k in the last. This shows orthonormality. Since we have 2n

such functions, they form a basis. So finally, the formula we wanted to show is just the
projection formula with respect to this orthonormal basis.
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Exercise 4. [R] Let X be a real-valued random variable defined on (Ω,F ,P) that takes
values in [0,∞] a.s. Let G ⊂ F be a sigma-algebra. Define E(X|G) and show that it is
unique (up to almost sure equivalence).
Solution. Refer to section 7 of chapter 10.
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