PROBABILITY THEORY (D-MATH) EXERCISE SHEET 11 – SOLUTION

Exercise 1. [R] Let $(X_n)_{n\geq 1}$ be iid random variables in L^1 and for $n\geq 1$, let

$$S_n = X_1 + \dots + X_n$$

Compute $E(S_n|X_1)$ and $E(X_1|S_n)$.

Solution. First, S_n is in L^1 being a finite sum of L^1 random variables. We get

 $E(S_n|X_1) = E(X_1|X_1) + \dots + E(X_n|X_1) = X_1 + E(X_2) + \dots + E(X_n) = X_1 + (n-2)E(X_1).$

Second, we claim that for all $i, j \in [n]$, $E(X_i|S_n) = E(X_j|S_n)$, indeed, this follows from the fact that (X_i, S_n) and (X_j, S_n) have the same distribution and the definition of conditional expectation. So

 $n \mathcal{E}(X_1|S_n) = \mathcal{E}(X_1|S_n) + \dots + \mathcal{E}(X_n|S_n) = \mathcal{E}(S_n|S_n) = S_n,$

so $E(X_1|S_n) = S_n/n$.

Exercise 2. [R] Let (Ω, \mathcal{F}, P) be a probability space. Let $\mathcal{G}, \mathcal{H} \subset \mathcal{F}$ be sigma-algebras and let X be a random variable. Show that we need not have that

$$E(E(X|\mathcal{G})|\mathcal{H}) = E(X|\mathcal{G} \cap \mathcal{H}).$$

Solution.

Let $\Omega = \{0, 1, 2\}$, $\mathcal{F} = 2^{\Omega}$ and P be the uniform measure. Let $X(\omega) = \omega$ and let $\mathcal{G} = \sigma(1_{X=2}) = \{\Omega, \emptyset, \{2\}, \{0, 1\}\}$ and $\mathcal{H} = \sigma(1_{X=0}) = \{\Omega, \emptyset, \{0\}, \{1, 2\}\}.$

Then $\mathcal{G} \cap \mathcal{H} = \{\Omega, \emptyset\}$, so

$$E(X|\mathcal{H} \cap \mathcal{G}) = E(X) = 1.$$

Now, one can compute

$$Y = E(X|\mathcal{H}) = (31_{X=2} + 1)/2$$

and so then we get $E(Y|1_{X=0} = 1) = 1/2$ and $E(Y|1_{X=0} = 1) = 1/4 + 1/2 = 3/4$. So $E(Y|\mathcal{G})$ is not the same random variable as E(X).

Exercise 3. [R] Let $(X_n)_{n\geq 1}$ be iid random variables taking values in $\{+1, -1\}$ with $P(X_1 = 1) = 1/2$. Let $S_0 = 0$ and for $n \ge 1$, let $S_n = X_1 + \cdots + X_n$. Let $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and for $n \ge 1$, let $\mathcal{F}_n = \sigma(X_1, \dots, X_n)$. Show that

$$M_n = S_n^2 - n$$

is a (\mathcal{F}_n) -martingale.

 $(X_{n+1} \text{ is}$ $(\mathrm{E}(X_{n+1}))$

Solution. First, M_n is \mathcal{F}_n -measurable because it is a measurable function of X_1, \ldots, X_n . Second, M_n is in L^1 because it is bounded. Finally, we check the martingale property. Fix $n \ge 0$.

$$\begin{split} \mathcal{E}(M_{n+1}|\mathcal{F}_n) &= \mathcal{E}((X_1 + \dots + X_{n+1}^2 - n - 1|\mathcal{F}_n)) \\ &= \mathcal{E}(S_n^2 + 2X_{n+1}S_n + X_{n+1}^2 - n - 1|\mathcal{F}_n) \\ (\text{linearity}) &= \mathcal{E}(S_n^2 - n|\mathcal{F}_n) + \mathcal{E}(2X_{n+1}S_n|\mathcal{F}_n) + \mathcal{E}(X_{n+1}^2 - 1|\mathcal{F}_n) \\ (S_n \text{ is } \mathcal{F}_n\text{-measurable}) &= S_n^2 - n2S_n\mathcal{E}(X_{n+1}|\mathcal{F}_n) + \mathcal{E}(X_{n+1}^2|\mathcal{F}_n) - 1 \\ (X_{n+1} \text{ is independent from } \mathcal{F}_n) &= M_n + 2S_n\mathcal{E}(X_{n+1}) + \mathcal{E}(X_{n+1}^2) - 1 \\ (\mathcal{E}(X_{n+1}) = 0 \text{ and } \mathcal{E}(X_{n+1}^2) = 1) &= M_n, \\ \text{as required.} \end{split}$$

3

Exercise 4. Fix $p \in (0, 1)$. Let $(X_n)_{n \ge 1}$ be iid random variables taking values in $\{+1, -1\}$ with $P(X_1 = 1) = p$. Let $S_0 = 0$ and for $n \ge 1$ let $S_n = X_1 + \cdots + X_n$. Let $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and for $n \ge 1$, let $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$. Show that

$$M_n = \left(\frac{1}{p} - 1\right)^{S_n}$$

is a (\mathcal{F}_n) -martingale.

Solution.

First, M_n is \mathcal{F}_n -measurable because it is a measurable function of X_1, \ldots, X_n . Second, M_n is in L^1 because it is bounded. Finally, we check the martingale property. Fix $n \ge 0$.

$$E(M_{n+1}|\mathcal{F}_n) = E((1/p-1)^{S_n}(1/p-1)^{X_{n+1}}|\mathcal{F}_n)$$

(M_n is \mathcal{F}_n -measurable) = $M_n E((1/p-1)^{X_{n+1}}|\mathcal{F}_n)$
(X_{n+1} is independent from \mathcal{F}_n) = $M_n E((1/p-1)^{X_{n+1}})$
= $M_n E(p(1-p)/(p) + (1-p)p/(1-p)) = M_n$.

as required.

Exercise 5 (Azuma's inequality). [R] Let $(X_n)_{n\geq 0}$ be martingale with respect to its canonical filtration $(\mathcal{F}_n)_{\geq 0}$. Assume $X_0 = 0$ and that $|X_n - X_{n-1}| \leq 1$ for all $n \geq 1$. Fix $m \geq 1$. The aim of this exercise is to show that $\lambda > 0$ we have

$$P(X_m > \lambda \sqrt{m}) \le e^{-\lambda^2/2}.$$
(1)

- (1) Let $\alpha > 0$. Show that for all $x \in [-1, 1]$ we have $e^{\alpha x} \leq \frac{e^{\alpha} + e^{-\alpha}}{2} + \frac{e^{\alpha} e^{-\alpha}}{2}x$
- (2) Set $Y_i = X_i X_{i-1}$. Show that for all $i \ge 1$ we have

$$\operatorname{E}(e^{\alpha Y_i}|\mathcal{F}_{i-1}) \le \cosh(\alpha) \le e^{\alpha^2/2}$$

- (3) Deduce that $E(e^{\alpha X_m}) \leq e^{\alpha^2 m/2}$.
- (4) Use $\alpha = \lambda / \sqrt{m}$ and Markov's inequality to prove (1).

Solution.

- (1) This inequality follows from the fact that $e^{\alpha x}$ is convex and $\frac{e^{\alpha}+e^{-\alpha}}{2}+\frac{e^{\alpha}-e^{-\alpha}}{2}x$ is the equation of the line segment joining $(-1, e^{-\alpha})$ and $(1, e^{\alpha})$.
- (2) By assumption $|Y_i| \leq 1$, so by part (1) and linearity we have

$$\mathcal{E}(e^{\alpha Y_i}|\mathcal{F}_{i-1}) = \cosh(\alpha) + \mathcal{E}(\sinh \alpha Y_i|\mathcal{F}_{i-1}) = \cosh(\alpha),$$

where we used the martingale property in the last equality. Now,

$$\cosh(\alpha) = \sum_{k \ge 0} \alpha^{2k} / (2k)! \le \sum_{k \ge 0} \alpha^{2k} / (2^k k!) = e^{\alpha^2 / 2}.$$

(3) We prove inductively that for all $0 \le k \le m$, we have $E(e^{\alpha X_k}) \le \exp(\alpha^2 k/2)$ as follows.

$$E(e^{\alpha X_k}) = E(e^{\alpha X_{k-1}}e^{\alpha Y_k})$$

= $E(E(e^{\alpha X_{k-1}}e^{\alpha Y_k}|\mathcal{F}_{k-1}))$
(X_{k-1} is \mathcal{F}_{k-1} -measurable) = $E(e^{\alpha X_{k-1}}E(e^{\alpha Y_k}|\mathcal{F}_{k-1}))$
(By part (2)) $\leq E(e^{\alpha X_{k-1}}e^{\alpha^2/2})$

(Induction hypothesis) $\leq e^{\alpha^2 k/2}$.

(4) We get

$$P(X_m > \lambda \sqrt{m}) = P(e^{\alpha X_m} > e^{\alpha \lambda \sqrt{m}})$$

(Markov) $\leq E(e^{\lambda X_m / \sqrt{m}}) / e^{\lambda^2}$
(part (3)) $\leq e^{-\lambda^2 / 2}$,

as desired.