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PROBABILITY THEORY (D-MATH)
EXERCISE SHEET 11 – SOLUTION

Exercise 1. [R] Let (Xn)n≥1 be iid random variables in L1 and for n ≥ 1, let
Sn = X1 + · · ·+Xn.

Compute E(Sn|X1) and E(X1|Sn).
Solution. First, Sn is in L1 being a finite sum of L1 random variables. We get
E(Sn|X1) = E(X1|X1)+ · · ·+E(Xn|X1) = X1+E(X2)+ · · ·+E(Xn) = X1+(n−2)E(X1).

Second, we claim that for all i, j ∈ [n], E(Xi|Sn) = E(Xj|Sn), indeed, this follows
from the fact that (Xi, Sn) and (Xj, Sn) have the same distribution and the definition of
conditional expectation. So

nE(X1|Sn) = E(X1|Sn) + · · ·+ E(Xn|Sn) = E(Sn|Sn) = Sn,

so E(X1|Sn) = Sn/n.
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Exercise 2. [R] Let (Ω,F ,P) be a probability space. Let G,H ⊂ F be sigma-algebras
and let X be a random variable. Show that we need not have that

E(E(X|G)|H) = E(X|G ∩ H).

Solution.
Let Ω = {0, 1, 2}, F = 2Ω and P be the uniform measure. Let X(ω) = ω and let

G = σ(1X=2) = {Ω, ∅, {2}, {0, 1}} and H = σ(1X=0) = {Ω, ∅, {0}, {1, 2}}.
Then G ∩ H = {Ω, ∅}, so

E(X|H ∩ G) = E(X) = 1.

Now, one can compute
Y = E(X|H) = (31X=2 + 1)/2

and so then we get E(Y |1X=0 = 1) = 1/2 and E(Y |1X=0 = 1) = 1/4 + 1/2 = 3/4. So
E(Y |G) is not the same random variable as E(X).
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Exercise 3. [R] Let (Xn)n≥1 be iid random variables taking values in {+1. − 1} with
P(X1 = 1) = 1/2. Let S0 = 0 and for n ≥ 1, let Sn = X1 + · · · + Xn. Let F0 = {∅,Ω}
and for n ≥ 1, let Fn = σ(X1, . . . , Xn). Show that

Mn = S2
n − n

is a (Fn)-martingale.
Solution. First, Mn is Fn-measurable because it is a measurable function of X1, . . . , Xn.
Second, Mn is in L1 because it is bounded. Finally, we check the martingale property.
Fix n ≥ 0.

E(Mn+1|Fn) = E((X1 + · · ·+X2
n+1 − n− 1|Fn))

= E(S2
n + 2Xn+1Sn +X2

n+1 − n− 1|Fn)

(linearity) = E(S2
n − n|Fn) + E(2Xn+1Sn|Fn) + E(X2

n+1 − 1|Fn)

(Sn is Fn-measurable) = S2
n − n2SnE(Xn+1|Fn) + E(X2

n+1|Fn)− 1

(Xn+1 is independent from Fn) = Mn + 2SnE(Xn+1) + E(X2
n+1)− 1

(E(Xn+1) = 0 and E(X2
n+1) = 1) = Mn,

as required.
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Exercise 4. Fix p ∈ (0, 1). Let (Xn)n≥1 be iid random variables taking values in {+1,−1}
with P(X1 = 1) = p. Let S0 = 0 and for n ≥ 1 let Sn = X1 + · · ·+Xn. Let F0 = {∅,Ω}
and for n ≥ 1, let Fn = σ(X1, . . . , Xn). Show that

Mn =

(
1

p
− 1

)Sn

is a (Fn)-martingale.
Solution.

First, Mn is Fn-measurable because it is a measurable function of X1, . . . , Xn. Second,
Mn is in L1 because it is bounded. Finally, we check the martingale property. Fix n ≥ 0.

E(Mn+1|Fn) = E((1/p− 1)Sn(1/p− 1)Xn+1|Fn)

(Mn is Fn-measurable) = MnE((1/p− 1)Xn+1|Fn)

(Xn+1 is independent from Fn) = MnE((1/p− 1)Xn+1)

= MnE
(
p(1− p)/(p) + (1− p)p/(1− p)

)
= Mn.

as required.
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Exercise 5 (Azuma’s inequality). [R] Let (Xn)n≥0 be martingale with respect to its
canonical filtration (Fn)≥0. Assume X0 = 0 and that |Xn −Xn−1| ≤ 1 for all n ≥ 1. Fix
m ≥ 1. The aim of this exercise is to show that λ > 0 we have

P(Xm > λ
√
m) ≤ e−λ2/2. (1)

(1) Let α > 0. Show that for all x ∈ [−1, 1] we have eαx ≤ eα+e−α

2
+ eα−e−α

2
x

(2) Set Yi = Xi −Xi−1. Show that for all i ≥ 1 we have

E(eαYi |Fi−1) ≤ cosh(α) ≤ eα
2/2.

(3) Deduce that E(eαXm) ≤ eα
2m/2.

(4) Use α = λ/
√
m and Markov’s inequality to prove (1).

Solution.
(1) This inequality follows from the fact that eαx is convex and eα+e−α

2
+ eα−e−α

2
x is

the equation of the line segment joining (−1, e−α) and (1, eα).
(2) By assumption |Yi| ≤ 1, so by part (1) and linearity we have

E(eαYi |Fi−1) = cosh(α) + E(sinhαYi|Fi−1) = cosh(α),

where we used the martingale property in the last equality. Now,

cosh(α) =
∑
k≥0

α2k/(2k)! ≤
∑
k≥0

α2k/(2kk!) = eα
2/2.

(3) We prove inductively that for all 0 ≤ k ≤ m, we have E(eαXk) ≤ exp(α2k/2) as
follows.

E(eαXk) = E(eαXk−1eαYk)

= E(E(eαXk−1e
αYk |Fk−1))

(Xk−1 is Fk−1-measurable) = E(eαXk−1E(eαYk |Fk−1))

(By part (2)) ≤ E(eαXk−1eα
2/2)

(Induction hypothesis) ≤ eα
2k/2.

(4) We get

P(Xm > λ
√
m) = P(eαXm > eαλ

√
m)

(Markov) ≤ E(eλXm/
√
m)/eλ

2

(part (3)) ≤ e−λ2/2,

as desired.
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