PROBABILITY THEORY (D-MATH) EXERCISE SHEET 12

Exercise 1. [R]

(1) Let $(X_n)_{n\geq 1}$ be an iid sequence of random variables uniform in $\{-1,1\}$. Show that

$$S_n = \sum_{m=1}^n \frac{X_m}{m^{3/4}}$$

converges almost surely as $n \to \infty$.

- (2) Find an example of a martingale that converges almost surely but is not bounded in L^1 .
- (3) Find an example of a martingale that converges almost surely to ∞ .

Exercise 2. Let $(Y_n)_{n\geq 0}$ be a sequence of non-negative iid random variables with $E(Y_1) = 1$ and $P(Y_1 = 1) < 1$ and let $(\mathcal{F}_n)_{n\geq 0}$ be the canonical filtration.

- (1) Show that $X_n = \prod_{k=0}^n Y_k$ defines a martingale with respect to (\mathcal{F}_n) .
- (2) Show that $X_n \to 0$ as $n \to \infty$ a.s.

Exercise 3. Fix $p \in (0, 1/2)$. Let $(X_n)_{n\geq 1}$ be iid random variables taking values in $\{-1, 1\}$ with $P(X_1 = 1) = p$. For $n \geq 1$ let $S_n = X_1 + \cdots + X_n$ and let

$$M_n = \left(\frac{1}{p} - 1\right)^{S_n}.$$

Show that M_n converges almost surely to 0 but $E(M_n)$ does not converge to 0 as $n \to \infty$.

Exercise 4 (Positive harmonic functions on the square lattice). Let

$$h:\mathbb{Z}^2\to\mathbb{R}_{>0}$$

be a harmonic function, meaning that

$$\forall (x,y) \in \mathbb{Z}^2 \quad h(x,y) = \frac{1}{4} \big(h(x+1,y) + h(x-1,y) + h(x,y+1) + h(x,y-1) \big).$$

The aim of this exercise is to show that h must be constant. Let $(X_n)_{n\geq 1}$ be iid uniform in $\{(1,0), (-1,0), (0,1), (0,-1)\}$. Define the sequence $(Z_n)_{n\geq 0}$ by $Z_0 = (0,0)$ and

$$Z_n = \sum_{k=1}^n X_k$$

for $n \geq 1$. Let (\mathcal{F}_n) be the filtration generated by (Z_n) .

- (1) Show that $(h(Z_n))_{n>0}$ is a \mathcal{F}_n -martingale that converges almost surely.
- (2) You may use the fact that

$$\forall (x,y) \in \mathbb{Z}^2 \quad |\{n: Z_n = (x,y)\}| = \infty \quad a.s.$$

Conclude that h is consant.

(3) Instead of assuming h takes positive values, assume that |h| is bounded. Then show that h is constant.

Exercise 5 (Pólya's Urn). At time 0, an urn contains 1 black ball and 1 white ball. At each time $n \ge 1$ a ball is chosen at random from the urn and is replaced together with a new ball of the same colour. Just after time n, there are therefore n + 2 balls in the urn, of which $B_n + 1$ are black, where B_n is the number of black balls chosen by time n. We let $\mathcal{F}_n = \sigma(B_1, \ldots, B_n)$.

- (1) Prove that B_n is uniformly distributed on $\{0, 1, \ldots, n\}$.
- (2) Let $M_n = (B_n + 1)/(n + 2)$ be the proportion of black balls in the urn just after time n. Prove that (M_n) is a martingale with respect to (\mathcal{F}_n) and show that $M_n \to U$ as $n \to \infty$ a.s. for some random variable U.
- (3) Show that U is uniformly distributed on (0, 1).

Submission of solutions. Hand in your solutions by 18:00, 13/12/2024 following the instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/

Note that only the exercises marked with [R] will be corrected.