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PROBABILITY THEORY (D-MATH)
EXERCISE SHEET 12 — SOLUTION

Exercise 1. |R]

(1) Let (X,)n>1 be an iid sequence of random variables uniform in {—1,1}. Show that
n Xm
Sn = Z m3/4
m=1
converges almost surely as n — oo.
(2) Find an example of a martingale that converges almost surely but is not bounded in
L'
(3) Find an example of a martingale that converges almost surely to occ.

Solution.
(1) Note that (S,) is a martingale and that

E(S?) = Zm_3/2 < (C < o0,

m=1

for some constant C' not depending on n, showing that (S,) is bounded in L?.
Therefore, S, is also bounded in L', and therefore converges almost surely.
(2) Let (X,)n>1 be independent random variables with law given by

1 1

and M, = X; +---+ X,,.

Since EX,, = 0 for every n > 1, (M,) is a martingale with respect to its
canonical filtration.  Since Y. . 57 < o0, Borel-Cantelli 1 implies that
P(limsup{|X,| = 4"}) = 0. Thus with probability 0 we have X,, = 4" infinitely
often. In other words, a.s. X,, = 0 for n sufficiently large, which implies that a.s.
M,, converges.

But if X, = 4", then M, > 4" —4"~1 — ... — 1 > 4"~L 50
E(|M,|) > E(|M,|1x,—4n) > 4" 'Pr X, =4"=2"7 — o0,
n—o0

so (M,) is not bounded in L'.
(3) Let (X,)n>1 be independent random variables with law given by

n? 1
- — P(X,=-n?)= ——
n? 41’ ( ") n? +1

and M, = X; +---+ X,,. Since E(X,,) =0 for every n > 1, (M,,) is a martingale
with respect to its canonical filtration. Since ) -, n++1 < 00, by Borel-Cantelli 1
we have P(limsup{X,, = —n?}) = 0. Thus with probability 0 we have X,, = —n?
infinitely often. In other words a.s. X, = 1 for every n sufficiently large, so

M, — oo a.s.

P(X, =1)



Exercise 2. Let (Y},),>0 be a sequence of non-negative iid random variables with E(Y]) =
1 and P(Y; = 1) <1 and let (F,),>0 be the canonical filtration.

(1)
(2)

Show that X,, = [];_, Ys defines a martingale with respect to (F,).
Show that X,, — 0 asn — 0o a.s.

Solution.

(1)

(2)

Clearly X, is F,,-measurable. In addition, X,, > 0 and E(X,,) = [/, E(Y;) = 1 for
all n > 1. Thus X,, € L'(Q, F,,, P). Also E(X,41 | Fn) =112, Yi - E(Yns1) = X,
which implies that (X,,) is a (F,,) martingale.
If P(Yy = 0) > 0, then since the events ({Y; = 0});>1 are independent, by the
second Borel-Cantelli Lemma, a.s. {Y; = 0} happens infinitely many times. This
implies that X,, = 0 for all n large enough a.s.

Let us now suppose then that Y; > 0 almost surely. We show that In(X,,) — —o0
as n — oo a.s., which will imply the desired result.

First case. 1In(Y7) is integrable. Then by using the strict concavity of the
logarithm we get E(InY];) < InE(Y;) = 0. Then by the strong law of large numbers

1
~In(X Zln —  E(ln(1)) <0.
almost surely. Thus In(X,,) — —oc a.s.

Second case. In(Y;) is not integrable. Then by monotone convergence
E(Inmax(Yj,e)) — —oo as ¢ — 0, so we can choose ¢ > 0 such that
E(Inmax(Y7,€)) < 0. Then by the strong law of large numbers

1 1 <
—In(X,) < =) In(max(Yie)) — B(lnmax(¥;Ve)) <0
n

n n— 00
i=1

Thus In(X,) — —o0o a.s.



Exercise 3. Fix p € (0,1/2). Let (X,),>1 be iid random variables taking values in
{-1,1} with P(X; =1)=p. Forn>11let S, = X; +---+ X,, and let

1 Sn
- ()"
p

Show that M,, converges almost surely to 0 but E(M,,) does not converge to 0 as n — oo.

Solution.
Note that E(X;) < 0 and 1/p —1 > 1 since p € (0,1/2). By the strong the law of
large numbers almost surely S,,/n — E(X}), and so S,, = —oo almost surely. Therefore,

M, — 0 almost surely. We saw in exercise 4 of sheet 11 that M, is a martingale. So
E(M,) = E(M;) =1 for all n.



Exercise 4 (Positive harmonic functions on the square lattice). Let

be a harmonic function, meaning that
1
V(z,y) € 2% h(z,y) = 7 (h(z + Ly) + bz = 1,y) + h(z,y + 1) + bz, y — 1)),

The aim of this exercise is to show that A must be constant. Let (X,,),>; be iid uniform
in {(1,0),(—1,0),(0,1), (0,—1)}. Define the sequence (Z,),>0 by Zo = (0,0) and

Ly = iXk
k=1

for n > 1. Let (F,,) be the filtration generated by (Z,,).
(1) Show that (h(Z”))n>0 is a F,-martingale that converges almost surely.
(2) You may use the fact that

V(z,y) €Z* |{n:Z, = (z,y)}| =00 a.s.

Conclude that h is consant.
(3) Instead of assuming h takes positive values, assume that |h| is bounded. Then
show that A is constant.

Solution.

(1) h(Z,) is Z, measurable so it is F,, measurable. Next, since Z, takes only finitely
many values, h(Z,) is bounded and hence in L'. Now, we check the martingale
property. Let n > 0. Let 21, ..., zx be the possible values that Z,, can take. Then
we have

E( n+1|f ZE n+1 1Zn—zl> fn)

k

= Z E(h(zl + Xn)lZn:Zi)

=1

Fn)
(Z, is Fp-measurable) = Z 1z, = E(h(z + Xog1)) | Fn)
(X1 is independent from F,) = Z 1z, . E(h(z + Xns1))

k
(h is harmonic) = Z 1z, —..h(2)

as required.
Finally, h(Z,) is a positive martingale so it is bounded in L' and so it converges
almost surely.

(2) Let w € Q be such that the event in the question holds and such that h(Z,(w))
converges to say [. (The set of such w has probability 1 so in particular we can
find one such.) Now, fix 2 € Z%. Then there exists infinitely many n such that
Z, = z. Therefore, we must have h(z) = [. Therefore, h must be the constant
function [.



(3) An analogous proof works using martingale convergence. Alternatively, one can
shift the bounded harmonic function by a constant to ensure that it is positive
and then apply the proof we just presented.



Exercise 5 (Pdlya’s Urn). At time 0, an urn contains 1 black ball and 1 white ball. At
each time n > 1 a ball is chosen at random from the urn and is replaced together with a
new ball of the same colour. Just after time n, there are therefore n + 2 balls in the urn,
of which B,, 4+ 1 are black, where B,, is the number of black balls chosen by time n. We
let Fn = O'(Bl,...,Bn).

(1) Prove that B, is uniformly distributed on {0, 1,...,n}.

(2) Let M,, = (B, + 1)/(n + 2) be the proportion of black balls in the urn just after
time n. Prove that (M,) is a martingale with respect to (F,,) and show that
M, — U as n — oo a.s. for some random variable U.

(3) Show that U is uniformly distributed on (0, 1).

Solution.

(1) We prove the claim by induction; when n = 0 the claim is obvious. Let us now
consider the induction step. Then by the problem description,
for b € {0,...,n+ 1}, we have

B,+1, n+1-B,
n42 hH n+2

E(1p, = | Fu) = 1p=g,- (1)

Thus by taking expectations on both sides and using the fact that B,, is uniform
on {0,...,n} we get

B b 1 +n+1—b 1 1
T n+2 n+1 n+2 n+l n+2

P(Bn+1 — b)

as required.
(2) Since M, is a function of B,, it is F, measurable. Also, M, € L' since it takes
values in [0,1]. By (1) we get

n+2b+1
E(Mn-l—l|fn):ZmE<1Bn+1:b|fn)
b=0
 B,+2 B,+1 B,+1 n+1-B

n+3 n+2 n+3 n+2

n
=M, a.s.

Since each M, takes values in [0,1], (M,) is bounded in L', so the martingale

convergence theorem implies that the limit U = lim,,_,, M,, almost surely exists.
(3) Let f:0,1] — R be continuous. We have

n+1

B0 =70 () 2 [ S 2)

by Riemann’s theorem. This can be proved by hand: since f is continuous on
[0,1] it is also uniformly continuous, so for every € > 0 there exists § > 0 such
that |z —y| < 0 implies |f(x) — f(y)| < e. Then, for n such that 1/n < § we have

|n—l&-2 - n-ll—l‘ S %’ SO

n+1

1 ; 1 i
- <
n+1z;f(n+2) n+1;f<n+1>‘_€




and also
n+1

nilgf(nL) —/Olf(t)dt

S (1 () - o)

=1 n+1
{
P<n+1>_f“m4

n+1
< 2
i=1

i
n+1
i—1
= n+1

< e

which implies (2).
But M,, — U almost surely, so by continuity of f we also have f(M,) — f(U)
almost surely. Since f is continuous on [0, 1] is it bounded, so by dominated

convergence we have E(f(M,)) — E(f(U)).
By (2) we conclude that

Aﬂ@wwszqw»ZAf@mp

It follows that U has the uniform distribution on [0, 1].
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