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PROBABILITY THEORY (D-MATH)
EXERCISE SHEET 12 – SOLUTION

Exercise 1. [R]
(1) Let (Xn)n≥1 be an iid sequence of random variables uniform in {−1, 1}. Show that

Sn =
n∑

m=1

Xm

m3/4

converges almost surely as n → ∞.
(2) Find an example of a martingale that converges almost surely but is not bounded in

L1.
(3) Find an example of a martingale that converges almost surely to ∞.

Solution.
(1) Note that (Sn) is a martingale and that

E(S2
n) =

n∑
m=1

m−3/2 < C < ∞,

for some constant C not depending on n, showing that (Sn) is bounded in L2.
Therefore, Sn is also bounded in L1, and therefore converges almost surely.

(2) Let (Xn)n≥1 be independent random variables with law given by

P(Xn = 4n) = P(Xn = −4n) =
1

2n
, P(Xn = 0) = 1− 1

2n−1

and Mn = X1 + · · ·+Xn.
Since EXn = 0 for every n ≥ 1, (Mn) is a martingale with respect to its

canonical filtration. Since
∑

n≥1
1

2n−1 < ∞, Borel-Cantelli 1 implies that
P(lim sup{|Xn| = 4n}) = 0. Thus with probability 0 we have Xn = 4n infinitely
often. In other words, a.s. Xn = 0 for n sufficiently large, which implies that a.s.
Mn converges.

But if Xn = 4n, then Mn ≥ 4n − 4n−1 − · · · − 1 ≥ 4n−1, so

E(|Mn|) ≥ E(|Mn|1Xn=4n) ≥ 4n−1 PrXn = 4n = 2n−2 −→
n→∞

∞,

so (Mn) is not bounded in L1.
(3) Let (Xn)n≥1 be independent random variables with law given by

P(Xn = 1) =
n2

n2 + 1
, P(Xn = −n2) =

1

n2 + 1

and Mn = X1 + · · ·+Xn. Since E(Xn) = 0 for every n ≥ 1, (Mn) is a martingale
with respect to its canonical filtration. Since

∑
n≥1

1
n2+1

< ∞, by Borel-Cantelli 1
we have P(lim sup{Xn = −n2}) = 0. Thus with probability 0 we have Xn = −n2

infinitely often. In other words a.s. Xn = 1 for every n sufficiently large, so
Mn → ∞ a.s.
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Exercise 2. Let (Yn)n≥0 be a sequence of non-negative iid random variables with E(Y1) =
1 and P(Y1 = 1) < 1 and let (Fn)n≥0 be the canonical filtration.

(1) Show that Xn =
∏n

k=0 Yk defines a martingale with respect to (Fn).
(2) Show that Xn → 0 as n → ∞ a.s.

Solution.
(1) Clearly Xn is Fn-measurable. In addition, Xn ≥ 0 and E(Xn) =

∏n
i=1 E(Yi) = 1 for

all n ≥ 1. Thus Xn ∈ L1(Ω,Fn,P). Also E(Xn+1 | Fn) =
∏n

i=1 Yi · E(Yn+1) = Xn,
which implies that (Xn) is a (Fn) martingale.

(2) If P(Y1 = 0) > 0, then since the events ({Yi = 0})i≥1 are independent, by the
second Borel-Cantelli Lemma, a.s. {Yi = 0} happens infinitely many times. This
implies that Xn = 0 for all n large enough a.s.

Let us now suppose then that Y1 > 0 almost surely. We show that ln(Xn) → −∞
as n → ∞ a.s., which will imply the desired result.

First case. ln(Y1) is integrable. Then by using the strict concavity of the
logarithm we get E(lnY1) < ln E(Y1) = 0. Then by the strong law of large numbers

1

n
ln(Xn) =

1

n

n∑
i=1

ln(Yi) −→
n→∞

E(ln(Y1)) < 0.

almost surely. Thus ln(Xn) → −∞ a.s.
Second case. ln(Y1) is not integrable. Then by monotone convergence

E(lnmax(Y1, ϵ)) → −∞ as ε → 0, so we can choose ε > 0 such that
E(lnmax(Y1, ϵ)) < 0. Then by the strong law of large numbers

1

n
ln(Xn) ≤

1

n

n∑
i=1

ln(max(Yi, ϵ)) −→
n→∞

E(lnmax(Y1 ∨ ϵ)) < 0

Thus ln(Xn) → −∞ a.s.
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Exercise 3. Fix p ∈ (0, 1/2). Let (Xn)n≥1 be iid random variables taking values in
{−1, 1} with P(X1 = 1) = p. For n ≥ 1 let Sn = X1 + · · ·+Xn and let

Mn =

(
1

p
− 1

)Sn

.

Show that Mn converges almost surely to 0 but E(Mn) does not converge to 0 as n → ∞.
Solution.

Note that E(X1) < 0 and 1/p − 1 > 1 since p ∈ (0, 1/2). By the strong the law of
large numbers almost surely Sn/n → E(X1), and so Sn → −∞ almost surely. Therefore,
Mn → 0 almost surely. We saw in exercise 4 of sheet 11 that Mn is a martingale. So
E(Mn) = E(M1) = 1 for all n.
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Exercise 4 (Positive harmonic functions on the square lattice). Let

h : Z2 → R>0

be a harmonic function, meaning that

∀(x, y) ∈ Z2 h(x, y) =
1

4

(
h(x+ 1, y) + h(x− 1, y) + h(x, y + 1) + h(x, y − 1)

)
.

The aim of this exercise is to show that h must be constant. Let (Xn)n≥1 be iid uniform
in {(1, 0), (−1, 0), (0, 1), (0,−1)}. Define the sequence (Zn)n≥0 by Z0 = (0, 0) and

Zn =
n∑

k=1

Xk

for n ≥ 1. Let (Fn) be the filtration generated by (Zn).
(1) Show that

(
h(Zn)

)
n≥0

is a Fn-martingale that converges almost surely.
(2) You may use the fact that

∀(x, y) ∈ Z2 |{n : Zn = (x, y)}| = ∞ a.s.

Conclude that h is consant.
(3) Instead of assuming h takes positive values, assume that |h| is bounded. Then

show that h is constant.

Solution.
(1) h(Zn) is Zn measurable so it is Fn measurable. Next, since Zn takes only finitely

many values, h(Zn) is bounded and hence in L1. Now, we check the martingale
property. Let n ≥ 0. Let z1, . . . , zk be the possible values that Zn can take. Then
we have

E(h(Zn+1|Fn) =
k∑

i=1

E(h(Zn+1)1Zn=zi)|Fn)

=
k∑

i=1

E(h(zi +Xn)1Zn=zi)|Fn)

(Zn is Fn-measurable) =
k∑

i=1

1Zn=ziE(h(zi +Xn+1))|Fn)

(Xn+1 is independent from Fn) =
k∑

i=1

1Zn=ziE(h(zi +Xn+1))

(h is harmonic) =
k∑

i=1

1Zn=zih(zi)

= h(Zn),

as required.
Finally, h(Zn) is a positive martingale so it is bounded in L1 and so it converges

almost surely.
(2) Let ω ∈ Ω be such that the event in the question holds and such that h(Zn(ω))

converges to say l. (The set of such ω has probability 1 so in particular we can
find one such.) Now, fix z ∈ Z2. Then there exists infinitely many n such that
Zn = z. Therefore, we must have h(z) = l. Therefore, h must be the constant
function l.
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(3) An analogous proof works using martingale convergence. Alternatively, one can
shift the bounded harmonic function by a constant to ensure that it is positive
and then apply the proof we just presented.
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Exercise 5 (Pólya’s Urn). At time 0, an urn contains 1 black ball and 1 white ball. At
each time n ≥ 1 a ball is chosen at random from the urn and is replaced together with a
new ball of the same colour. Just after time n, there are therefore n+ 2 balls in the urn,
of which Bn + 1 are black, where Bn is the number of black balls chosen by time n. We
let Fn = σ(B1, . . . , Bn).

(1) Prove that Bn is uniformly distributed on {0, 1, . . . , n}.
(2) Let Mn = (Bn + 1)/(n + 2) be the proportion of black balls in the urn just after

time n. Prove that (Mn) is a martingale with respect to (Fn) and show that
Mn → U as n → ∞ a.s. for some random variable U .

(3) Show that U is uniformly distributed on (0, 1).

Solution.

(1) We prove the claim by induction; when n = 0 the claim is obvious. Let us now
consider the induction step. Then by the problem description,
for b ∈ {0, . . . , n+ 1}, we have

E(1Bn+1=b | Fn) =
Bn + 1

n+ 2
1b=Bn+1 +

n+ 1−Bn

n+ 2
1b=Bn . (1)

Thus by taking expectations on both sides and using the fact that Bn is uniform
on {0, . . . , n} we get

P(Bn+1 = b) =
b

n+ 2
· 1

n+ 1
+

n+ 1− b

n+ 2
· 1

n+ 1
=

1

n+ 2

as required.
(2) Since Mn is a function of Bn, it is Fn measurable. Also, Mn ∈ L1 since it takes

values in [0, 1]. By (1) we get

E(Mn+1 | Fn) =
n+2∑
b=0

b+ 1

n+ 3
E(1Bn+1=b | Fn)

=
Bn + 2

n+ 3
· Bn + 1

n+ 2
+

Bn + 1

n+ 3
· n+ 1−Bn

n+ 2
= Mn a.s.

Since each Mn takes values in [0, 1], (Mn) is bounded in L1, so the martingale
convergence theorem implies that the limit U = limn→∞Mn almost surely exists.

(3) Let f : [0, 1] → R be continuous. We have

E(f(Mn)) =
1

n+ 1

n+1∑
i=1

f

(
i

n+ 2

)
−→
n→∞

∫ 1

0

f(t)dt, (2)

by Riemann’s theorem. This can be proved by hand: since f is continuous on
[0, 1] it is also uniformly continuous, so for every ε > 0 there exists δ > 0 such
that |x− y| ≤ δ implies |f(x)− f(y)| ≤ ε. Then, for n such that 1/n < δ we have
| i
n+2

− i
n+1

| ≤ 1
n
, so∣∣∣∣∣ 1

n+ 1

n+1∑
i=1

f

(
i

n+ 2

)
− 1

n+ 1

n+1∑
i=1

f

(
i

n+ 1

)∣∣∣∣∣ ≤ ε
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and also∣∣∣∣∣ 1

n+ 1

n+1∑
i=1

f

(
i

n+ 1

)
−

∫ 1

0

f(t)dt

∣∣∣∣∣ =

∣∣∣∣∣
n+1∑
i=1

∫ i
n+1

i−1
n+1

(
f

(
i

n+ 1

)
− f(t)dt

)∣∣∣∣∣
≤

n+1∑
i=1

∫ i
n+1

i−1
n+1

∣∣∣∣f (
i

n+ 1

)
− f(t)dt

∣∣∣∣
≤ ε.

which implies (2).
But Mn → U almost surely, so by continuity of f we also have f(Mn) → f(U)

almost surely. Since f is continuous on [0, 1] is it bounded, so by dominated
convergence we have E(f(Mn)) → E(f(U)).

By (2) we conclude that∫
R
f(x)µU(dx) = E(f(U)) =

∫ 1

0

f(x)dx.

It follows that U has the uniform distribution on [0, 1].
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