PROBABILITY THEORY (D-MATH) EXERCISE SHEET 13 – SOLUTION

Exercise 1. Let $(\mathcal{F}_n)_{n\geq 0}$ be a filtration and let S, T be two stopping times with respect to $(\mathcal{F}_n)_{n\geq 0}$. Let $S, T : \Omega \to \mathbb{N} \cup \{\infty\}$ be (\mathcal{F}_n) stopping times. Prove or disprove with a counter-example the following statements:

- (1) $S \lor T$ is a stopping time.
- (2) $S \wedge T$ is a stopping time.
- (3) S + T is a stopping time.
- (4) S + 1 is a stopping time.
- (5) S-1 is a stopping time.

Solution.

- (1) This is true. Indeed for $n \ge 0$ we have $\{S \lor T \le n\} = \{S \le n\} \cap \{T \le n\} \in \mathcal{F}_n$ for $n \ge 0$ since $\{S \le n\}, \{T \le n\} \in \mathcal{F}_n$.
- (2) This is true. For $n \ge 0$ we have $\{S \land T > n\} = \{S > n\} \cap \{T > n\}$ which is an element of \mathcal{F}_n since \mathcal{F}_n is stable under intersections and $\{S > n\} = \{S \le n\}^c, \{T > n\} = \{T \le n\}^c \in \mathcal{F}_n$. Therefore also $\{S \land T \le n\} = \{S \land T > n\}^c \in \mathcal{F}_n$ as required.
- (3) This is also true. Indeed, we have

$$\{S + T \le n\} = \bigcup_{k+\ell \le n} \{S \le k\} \cap \{T \le \ell\}.$$

Also $\{S \leq k\} \in \mathcal{F}_k \subset \mathcal{F}_n$ and $\{T \leq \ell\} \in \mathcal{F}_\ell \subset \mathcal{F}_n$ for $k, \ell \leq n$. Thus $\{S+T \leq n\} \in \mathcal{F}_n$ for all $n \geq 0$ as required.

- (4) This is true. Indeed, for $n \ge 1$ we have $\{S+1 \le n\} = \{S \le n-1\} \in \mathcal{F}_{n-1} \subset \mathcal{F}_n$ and $\{S+1=0\} = \emptyset$.
- (5) This is not true. For instance, consider a Bernoulli random variable B with parameter 1/2 and let $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_n = \sigma(B)$ for $n \ge 1$. Then T := B + 1 is an (\mathcal{F}_n) stopping time but $\{T 1 = 0\} = \{B = 0\} \notin \mathcal{F}_0$.

Exercise 2. [R] Let $(X_n)_{n\geq 1}$ be iid random variables uniform in $\{-1,1\}$. Let $S_0 = 0$ and for $n \geq 1$ let $S_n = X_1 + \cdots + X_n$. Fix integers a < 0 < b. For an integer k, define $T_k = \min\{n \geq 0 : S_n = a\}$. Define

$$T_{a,b} = T_a \wedge T_b.$$

- (1) Show that $T_{a,b}$ is a stopping time that is finite almost surely.
- (2) Compute $P(T_a < T_b)$.
- (3) Compute $E(T_{a,b})$.

Solution.

(1) We write $T = T_{a,b}$ for simplicity. We saw in the lectures that T_a and T_b are stopping times, so exercise 1 of this sheet shows that $T_{a,b}$ is also a stopping time. The proof that T is finite almost surely is similar to the one in exercise 1 of exercise sheet 1. We will also use the following observation. The proof that T is finite almost surely also gives the bound

$$\forall n \ge 1 \quad \mathrm{P}(T > n) \le \delta^{n + o(n)}$$

for some $\delta \in (0, 1)$. This shows that $E(T) < \infty$ as well.

(2) Note that (S_n) is a martingale. We verify that optional stopping holds for the stopping time T. Indeed, (1) shows $T < \infty$ a.s. and all random variables in the sequence $(S_{n \wedge T})$ lie in the interval [b, a] (by the definition of T) so this sequence is uniformly integrable. By a result in the lecture, we have

$$\mathbf{E}(S_T) = 0$$

But

$$E(S_T) = P(T_a < T_b)a + (1 - P(T_a < T_b))b,$$

so we get

$$P(T_a < T_b) = -b/(a-b).$$

(3) Consider the martingale $(M_n = S_n - n)$ (we verified this in exercise sheet 11). As in the previous part, to apply optional stopping for the stopping time T, we check that (M_n) is UI. For all $n \ge 1$ we have

$$|M_{n\wedge T}| \le \max(a, -b) + T.$$

Using that T is in L^1 (as observed in part (1)) we get that $(M_{n \wedge T})$ is uniformly integrable. So again optional stopping applies and we get

$$\mathcal{E}(S_T) - \mathcal{E}(T) = 0,$$

which implies, using part (2), that

$$\mathbf{E}(T) = \mathbf{P}(T_a < T_b)a + \mathbf{P}(T_b < T_a)b = -ab = a|b|.$$

Exercise 3. [R] Let $(M_n)_{n\geq 0}$ be a $(\mathcal{F}_n)_{n\geq 0}$ martingale and let T be a $(\mathcal{F}_n)_{n\geq 0}$ stopping time.

(1) Assume that $E(T) < \infty$ and there there exists K > 0 such that a.s. we have

$$\mathrm{E}(|M_{n+1} - M_n|) \mid \mathcal{F}_n \le K$$

for every $n \ge 0$. Show that $E(M_T) = E(M_0)$. Hint. Justify that $|M_{T \wedge n}| \le |M_0| + \sum_{i=0}^{\infty} |M_{i+1} - M_i| \mathbf{1}_{T>i}$ and use dominated convergence.

(2) Let $(X_n)_{n\geq 1}$ be iid L^1 real-valued random variables. Set $S_0 = 0$, $S_n = X_1 + \cdots + X_n$ for $n \ge 1$ and $\mathcal{F}_n = \sigma(S_i : 0 \le i \le n)$ for $n \ge 0$. Finally, let T be a (\mathcal{F}_n) -stopping time with $E(T) < \infty$. Show that

$$\mathcal{E}(S_T) = \mathcal{E}(X_1)\mathcal{E}(T).$$

Solution.

(1) Let us prove

$$|M_{T \wedge n}| \le |M_0| + \sum_{i=0}^{\infty} |M_{i+1} - M_i| \mathbf{1}_{T > i}.$$
 (1)

Write

$$M_{T \wedge n} = M_0 + \sum_{i=0}^{n \wedge T-1} (M_{i+1} - M_i) \le M_0 + \sum_{i=0}^{\infty} (M_{i+1} - M_i) \mathbb{1}_{T > i},$$

and we get (1) by triangular inequality.

Since $E(T) < \infty$, it follows that $T < \infty$ a.s. As a consequence, $M_{T \wedge n}$ converges almost surely to M_T . In addition, by (1), we are in position to use dominated convergence since $|M_0| + \sum_{i=0}^{\infty} |M_{i+1} - M_i| \mathbf{1}_{T>i}$ is integrable. Indeed using the fact that $1_{T>i}$ is \mathcal{F}_i measurable, write

$$E(|M_0|) + \sum_{i=0}^{\infty} E(|M_{i+1} - M_i| |1_{T>i}) = E(|M_0|) + \sum_{i=0}^{\infty} E(E(|M_{i+1} - M_i|) | \mathcal{F}_i) |1_{T>i}$$

$$\leq E(|M_0|) + \sum_{i=0}^{\infty} KE(|1_{T>i})$$

$$= E(|M_0|) + KE(T) < \infty,$$

where we have used the fact that $E(Z) = \sum_{i=1}^{\infty} P(Z \ge i)$ for every non-negative integer valued random variable Z. We thus get $E(M_{T \wedge n}) \to E(M_T)$ as $n \to \infty$. Since $E(M_{T \wedge n}) = E(M_0)$ for every $n \ge 0$, we get the desired result.

(2) We use (1) with the martingale $M_n = S_n - E(X_1)n$. We just have to check that there exists K > 0 such that a.s. we have $E(|M_{n+1} - M_n||\mathcal{F}_n) \leq K$ for every $n \geq 0$. To this end write

$$E(|M_{n+1} - M_n||\mathcal{F}_n) = E(|X_{n+1} - E(X_1)||\mathcal{F}_n) \le 2E(|X_1|).$$

Exercise 4. Let $(M_n)_{n\geq 0}$ be a uniformly integrable martingale with respect to a filtration $(\mathcal{F}_n)_{n\geq 0}$.

- (1) Is it true that the collection $\{M_T : T \text{ stopping time with respect to } (\mathcal{F}_n)_{n \geq 0}\}$ is uniformly integrable?
- (2) Let T be a stopping time. Is it true that $(M_{n \wedge T})_{n \geq 0}$ is a uniformly integrable martingale? Justify your answer.

Solution.

- (1) Yes it is true. It follows from the following two facts seen in the lecture : $M_T = \mathcal{E}(Z|\mathcal{F}_T)$ and for any collection of σ -fields $(\mathcal{A}_i)_{i \in I}$ the collection $(\mathcal{E}(Z|\mathcal{A}_i)_{i \in I})$ is uniformly integrable.
- (2) Yes it is true, as a consequence of (1) since $n \wedge T$ is a stopping time for every $n \geq 0$.