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PROBABILITY THEORY (D-MATH)
EXERCISE SHEET 13 – SOLUTION

Exercise 1. Let (Fn)n≥0 be a filtration and let S, T be two stopping times with respect
to (Fn)n≥0. Let S, T : Ω → N ∪ {∞} be (Fn) stopping times. Prove or disprove with a
counter-example the following statements:
(1) S ∨ T is a stopping time.
(2) S ∧ T is a stopping time.
(3) S + T is a stopping time.
(4) S + 1 is a stopping time.
(5) S − 1 is a stopping time.

Solution.
(1) This is true. Indeed for n ≥ 0 we have {S ∨ T ≤ n} = {S ≤ n} ∩ {T ≤ n} ∈ Fn for

n ≥ 0 since {S ≤ n}, {T ≤ n} ∈ Fn.
(2) This is true. For n ≥ 0 we have {S ∧ T > n} = {S > n} ∩ {T > n} which is an

element of Fn since Fn is stable under intersections and {S > n} = {S ≤ n}c, {T >
n} = {T ≤ n}c ∈ Fn. Therefore also {S ∧ T ≤ n} = {S ∧ T > n}c ∈ Fn as required.

(3) This is also true. Indeed, we have

{S + T ≤ n} =
⋃

k+ℓ≤n

{S ≤ k} ∩ {T ≤ ℓ} .

Also {S ≤ k} ∈ Fk ⊂ Fn and {T ≤ ℓ} ∈ Fℓ ⊂ Fn for k, ℓ ≤ n. Thus {S+T ≤ n} ∈ Fn

for all n ≥ 0 as required.
(4) This is true. Indeed, for n ≥ 1 we have {S +1 ≤ n} = {S ≤ n− 1} ∈ Fn−1 ⊂ Fn and

{S + 1 = 0} = ∅.
(5) This is not true. For instance, consider a Bernoulli random variable B with parameter

1/2 and let F0 = {∅,Ω} and Fn = σ(B) for n ≥ 1. Then T := B + 1 is an (Fn)
stopping time but {T − 1 = 0} = {B = 0} /∈ F0.
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Exercise 2. [R] Let (Xn)n≥1 be iid random variables uniform in {−1, 1}. Let S0 = 0
and for n ≥ 1 let Sn = X1 + · · · + Xn. Fix integers a < 0 < b. For an integer k, define
Tk = min{n ≥ 0 : Sn = a}. Define

Ta,b = Ta ∧ Tb.

(1) Show that Ta,b is a stopping time that is finite almost surely.
(2) Compute P(Ta < Tb).
(3) Compute E(Ta,b).

Solution.
(1) We write T = Ta,b for simplicity. We saw in the lectures that Ta and Tb are stopping

times, so exercise 1 of this sheet shows that Ta,b is also a stopping time. The proof
that T is finite almost surely is similar to the one in exercise 1 of exercise sheet 1. We
will also use the following observation. The proof that T is finite almost surely also
gives the bound

∀n ≥ 1 P(T > n) ≤ δn+o(n),

for some δ ∈ (0, 1). This shows that E(T ) < ∞ as well.
(2) Note that (Sn) is a martingale. We verify that optional stopping holds for the stopping

time T . Indeed, (1) shows T < ∞ a.s. and all random variables in the sequence (Sn∧T )
lie in the interval [b, a] (by the definition of T ) so this sequence is uniformly integrable.
By a result in the lecture, we have

E(ST ) = 0.

But
E(ST ) = P(Ta < Tb)a+ (1− P(Ta < Tb))b,

so we get
P(Ta < Tb) = −b/(a− b).

(3) Consider the martingale (Mn = Sn − n) (we verified this in exercise sheet 11). As in
the previous part, to apply optional stopping for the stopping time T , we check that
(Mn) is UI. For all n ≥ 1 we have

|Mn∧T | ≤ max(a,−b) + T.

Using that T is in L1 (as observed in part (1)) we get that (Mn∧T ) is uniformly
integrable. So again optional stopping applies and we get

E(ST )− E(T ) = 0,

which implies, using part (2), that
E(T ) = P(Ta < Tb)a+ P(Tb < Ta)b = −ab = a|b|.
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Exercise 3. [R] Let (Mn)n≥0 be a (Fn)n≥0 martingale and let T be a (Fn)n≥0 stopping
time.
(1) Assume that E(T ) < ∞ and there there exists K > 0 such that a.s. we have

E(|Mn+1 −Mn|) | Fn ≤ K

for every n ≥ 0. Show that E(MT ) = E(M0).
Hint. Justify that |MT∧n| ≤ |M0| +

∑∞
i=0 |Mi+1 − Mi|1T>i and use dominated

convergence.
(2) Let (Xn)n≥1 be iid L1 real-valued random variables. Set S0 = 0, Sn = X1 + · · ·+Xn

for n ≥ 1 and Fn = σ(Si : 0 ≤ i ≤ n) for n ≥ 0. Finally, let T be a (Fn)-stopping
time with E(T ) < ∞. Show that

E(ST ) = E(X1)E(T ).

Solution.
(1) Let us prove

|MT∧n| ≤ |M0|+
∞∑
i=0

|Mi+1 −Mi|1T>i. (1)

Write

MT∧n = M0 +
n∧T−1∑
i=0

(Mi+1 −Mi) ≤ M0 +
∞∑
i=0

(Mi+1 −Mi)1T>i,

and we get (1) by triangular inequality.
Since E(T ) < ∞, it follows that T < ∞ a.s. As a consequence, MT∧n converges

almost surely to MT . In addition, by (1), we are in position to use dominated
convergence since |M0| +

∑∞
i=0 |Mi+1 − Mi|1T>i is integrable. Indeed using the fact

that 1T>i is Fi measurable, write

E(|M0|) +
∞∑
i=0

E(|Mi+1 −Mi|1T>i) = E(|M0|) +
∞∑
i=0

E(E(|Mi+1 −Mi)| | Fi)1T>i

≤ E(|M0|) +
∞∑
i=0

KE(1T>i)

= E(|M0|) +KE(T ) < ∞,

where we have used the fact that E(Z) =
∑∞

i=1 P(Z ≥ i) for every non-negative integer
valued random variable Z. We thus get E(MT∧n) → E(MT ) as n → ∞. Since
E(MT∧n) = E(M0) for every n ≥ 0, we get the desired result.

(2) We use (1) with the martingale Mn = Sn−E(X1)n. We just have to check that there
exists K > 0 such that a.s. we have E(|Mn+1 −Mn||Fn) ≤ K for every n ≥ 0. To
this end write

E(|Mn+1 −Mn||Fn) = E(|Xn+1 − E(X1)||Fn) ≤ 2E(|X1|).
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Exercise 4. Let (Mn)n≥0 be a uniformly integrable martingale with respect to a filtration
(Fn)n≥0.
(1) Is it true that the collection {MT : T stopping time with respect to (Fn)n≥0} is

uniformly integrable?
(2) Let T be a stopping time. Is it true that (Mn∧T )n≥0 is a uniformly integrable

martingale? Justify your answer.

Solution.
(1) Yes it is true. It follows from the following two facts seen in the lecture :

MT = E(Z|FT ) and for any collection of σ-fields (Ai)i∈I the collection (E(Z|Ai)i∈I is
uniformly integrable.

(2) Yes it is true, as a consequence of (1) since n ∧ T is a stopping time for every n ≥ 0.

4


	Exercise 1 
	Exercise 2
	Exercise 3
	Exercise 4

