$\mathrm{HS}\ 2024$

PROBABILITY THEORY (D-MATH) EXERCISE SHEET 2

Exercise 1. Give an example of a subsequence $(n(k))_{k\geq 1}$ such that

$$X_{n(k)} \xrightarrow{a.s.} 0,$$

where

- (i) $(X_n)_{n\geq 1}$ is iid with $X_1 \sim \text{Ber}(1/n)$.
- (ii) $(X_n)_{n\geq 1}$ is the typesetter sequence.

Exercise 2 [**R**]. Let (E, d) and (E', d') be metric spaces. Let $(X_n)_{n\geq 1}$ and X be random variables taking values in E.

- (i) (Subsubsequence lemma) Show that X_n converges to X in probability if and only if for every subsequence $(n(k))_{k\geq 1}$ there exists a subsubsequence $(n(k(l))_{l\geq 1}$ such that $X_{n(k(l))}$ converges to X almost surely as $l \to \infty$.
- (ii) (Continuous mapping) Let $f: E \to E'$ be a continuous function. First, suppose $X_n \to X$ a.s. and show that $f(X_n) \to f(X)$ a.s. Next, suppose $X_n \to X$ in probability and show that $f(X_n) \to f(X)$ in probability.

Exercise 3 [R]. Let $(Y_n)_{n\geq 1}$ be a sequence of independent random variables such that $Y_n \sim \text{Exp}(\lambda_n)$, where $(\lambda_n)_{n\geq 1}$ is a sequence of positive real numbers such that $\lambda_n \to \infty$ as $n \to \infty$.

- (i) Show that $Y_n \to 0$ in probability.
- (ii) Let $\lambda_n = 10 \log n$. Does Y_n converge to 0 almost surely?
- (iii) Let $\lambda_n = (\log n)^2$. Does Y_n converge to 0 almost surely?

Exercise 4. Define the space of functions

$$L^0 = \{X : \Omega \to E \text{ measurable}\} / \sim,$$

where the equivalence relation \sim is defined by

$$X \sim Y \iff X = Y \ a.s.$$

- (i) Show that $D(X,Y) = E(1 \wedge d(X,Y))$ defines a metric on L^0 .
- (ii) Assume E is complete. Show that (L^0, D) is complete.

Exercise 5. Let $(X_n)_{n\geq 1}$ be an iid sequence of random variables with $E(|X_1|) < \infty$. Define

$$S_n = \sum_{i=1}^n X_i X_{i+1}.$$

Show that S_n/n converges almost surely.

Submission of solutions. Hand in your solutions by 18:00, 04/10/2024 following the instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/

Note that only the exercises marked with [R] will be corrected.