
Prof. Vincent Tassion HS 2024

PROBABILITY THEORY (D-MATH)
EXERCISE SHEET 2 – SOLUTION

Exercise 1. Give an example of a subsequence (n(k))k≥1 such that

Xn(k)
a.s.−−→ 0,

where
(i) (Xn)n≥1 is iid with X1 ∼ Ber(1/n).
(ii) (Xn)n≥1 is the typesetter sequence.

Solution.
We use the criterion for almost sure convergence in section 5 of chapter 2 of the lecture

notes.
(i) Consider the subsequence n(k) = 2k. Let ϵ > 0. Then∑

k≥1

P(Xn(k) ≥ ϵ) =
∑
k≥1

P(Xn(k) = 1) =
∑
k≥1

2−k < ∞.

So by the criterion Xn(k)
a.s.−−→ 0.

(ii) Consider the subsequence n(k) = 2k. Let ϵ > 0. Then∑
k≥1

P(Xn(k) ≥ ϵ) =
∑
k≥1

P(ω ∈ [0, 2−k]) =
∑
k≥1

2−k < ∞.

So by the criterion Xn(k)
a.s.−−→ 0.
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Exercise 2 [R]. Let (E, d) and (E ′, d′) be metric spaces. Let (Xn)n≥1 and X be random
variables taking values in E.

(i) (Subsubsequence lemma) Show that Xn converges to X in probability if and only if
for every subsequence (n(k))k≥1 there exists a subsubsequence (n(k(l))l≥1 such that
Xn(k(l)) converges to X almost surely as l → ∞.

(ii) (Continuous mapping) Let f : E → E ′ be a continuous function. First, suppose
Xn → X a.s. and show that f(Xn) → f(X) a.s. Next, suppose Xn → X in
probability and show that f(Xn) → f(X) in probability.

Solution.
(i) (⇒) Suppose Xn converges to X in probability and let (n(k))k≥1 be a subsequence.

We also have that Xn(k) converges to X in probability so the Proposition in section
7 of chapter 2 in the notes implies that we can extract a further subsequence n(k(l))

such that Xn(k(l))
a.s.−−→ X.

(⇐) For a contradiction, suppose Xn does not converge to X in probability. Then
there exist ϵ, δ > 0 and a subsequence (n(k))k≥1 such that for all k ≥ 1,

P(|Xn(k) −Xn| ≥ ϵ) > δ.

But then Xn cannot converge to X almost surely along any subsequence of n(k),
which contradicts the assumption.

(ii) First, suppose Xn → X a.s. Let ω ∈ Ω be such that Xn(ω) → X(ω). Since f is
continuous we have that f(Xn(ω)) → f(X(ω)). So

{ω : Xn(ω) → X(ω)} ⊂ {ω : f(Xn(ω)) → f(X(ω))}.
So

P({ω : f(Xn(ω)) → f(X(ω))}) = 1.

So f(Xn) → f(X) a.s.
Second, suppose Xn → X in probability. We use the characterisation in exercise

2(i) to show that f(Xn) converges to f(X) in probability. Let n(k) be a subsequence.
By the (⇒) of the characterisation, we find a subsubsequence n(k(l)) such that
Xn(k(l)) → X almost surely as l → ∞. By the previous part of this exercise, we get
that f(Xn(k(l))) → f(X) almost surely as l → ∞. So by (⇐) of the characterisation,
f(Xn) → f(X) in probability.
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Exercise 3 [R]. Let (Yn)n≥1 be a sequence of independent random variables such that
Yn ∼ Exp(λn), where (λn)n≥1 is a sequence of positive real numbers such that λn → ∞
as n → ∞.

(i) Show that Yn → 0 in probability.
(ii) Let λn = 10 log n. Does Yn converge to 0 almost surely?
(iii) Let λn = (log n)2. Does Yn converge to 0 almost surely?

Solution.
(i) Let ϵ > 0. Then P(|Yn| ≥ ϵ) = exp(−λn), which converges to 0.
(ii) We show that Yn does not converge almost surely to 0 in this case. Observe that∑

n≥1

P(Yn > 1/20) =
∑
n≥1

exp

(
− log n

2

)
=
∑
n≥1

1/
√
n = ∞.

Since the Yn’s are independent, the second Borel-Cantelli lemma implies that
{Yn > 1/20} occurs infinitely often almost surely, which shows that Yn does not
converge to 0 almost surely.

(iii) Let λn = (log n)2. We show that Yn converges to 0 almost surely by checking the
criterion for almost sure convergence section 5 of chapter 2 of the lecture notes. Fix
ϵ > 0. Then ∑

n≥1

P(Yn > ϵ) =
∑
n≥1

exp
(
−ϵ log2 n

)
< ∞.
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Exercise 4. Define the space of functions
L0 = {X : Ω → E measurable}/ ∼,

where the equivalence relation ∼ is defined by
X ∼ Y ⇐⇒ X = Y a.s.

(i) Show that D(X, Y ) = E
(
1 ∧ d(X, Y )

)
defines a metric on L0.

(ii) Assume E is complete. Show that (L0, D) is complete.

Solution.
(i) First, since 1∧ d(x, y) ≥ 0 for all x, y ∈ E, D(X, Y ) ≥ 0 for all X, Y ∈ L0. Next, we

show
D(X, Y ) = 0 ⇐⇒ X = Y a.s.

If X = Y a.s. then d(X, Y )a.s., so D(X, Y ) = 0. For the other direction, suppose
X ̸= Y . By defininition, P(X ̸= Y ) > 0. Writing

P(X ̸= Y ) > 0 =
⋂
n≥1

{P(d(X, Y ) > 1/n)},

we see that there exists n > 0 such that P(d(X, Y ) > 1/n). So D(X, Y ) = E[1 ∧
D(X, Y )] ≥ P(d(X, Y ) > 1/n)/n > 0. Second, since d is symmetric, so is D. Third,
let X, Y, Z ∈ L0. By the triangle inequality for d we have for all ω

1 ∧ d(X(ω), Z(ω)) ≤ 1 ∧
(
d(X(ω), Y (ω)) + d(Y (ω), Z(ω))

)
≤ 1 ∧ d(X(ω), Y (ω)) + 1 ∧ d(X(ω), Z(ω)).

Taking expectations proves the triangle inequality for D.
(ii) Assume E is complete. Let (Xn)n≥1 be a Cauchy sequence in (L0, D). We can find

a subsequence of random variables (Yk = Xn(k))k≥1 such that that for all k ≥ 1,

D(Yk, Yk+1) < 2−k.

Then

E

(∑
k≥1

d(Yk, Yk+1) ∧ 1

)
< ∞,

which implies
∑

k≥1 d(Yk, Yk+1) ∧ 1 < ∞ a.s. and therefore also∑
k≥1 d(Yk, Yk+1) < ∞ a.s. (because by Borel-Cantelli I, a.s. there are only finitely

many values of k with D(Yk, Yk+1) > 1). So a.s. (Yk)k≥1 is a Cauchy sequence in E;
using completemeness of E define Y to be the limit of the sequence under this
event and 0 on its complement. By construction, we have

d(Yn, Y ) ∧ 1 → 0 a.s.

So by dominated convergence D(Yn, Y ) → 0. Since (Xn) is Cauchy and a
subsequence Xn(k) → Y , Xn → Y as well.
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Exercise 5. Let (Xn)n≥1 be an iid sequence of random variables with E(|X1|) < ∞.
Define

Sn =
n∑

i=1

XiXi+1.

Show that Sn/n converges almost surely.
Solution.

We let

M+
n =

1

n

n∑
i=1

X2iX2i+1 and M−
n =

1

n

n∑
i=1

X2i−1X2i .

Since the sequences (X2iX2i+1)i≥1 and (X2i−1X2i)i≥1 are i.i.d. and
E(X2iX2i+1) = E(X2i−1X2i) = E(X)2, the strong law of large numbers implies that

M+
n → E(X)2 and M−

n → E(X)2 as n → ∞ a.s.

Note that M2n = M+
n−1 · (1/2− 1/(2n)) +M−

n /2 and M2n+1 = (M+
n +M−

n ) · n/(2n+ 1),
so we deduce that Mn → E(X)2 as n → ∞ almost surely.

5


	Exercise 1
	Exercise 2 [R]
	Exercise 3 [R]
	Exercise 4
	Exercise 5

