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PROBABILITY THEORY (D-MATH)
EXERCISE SHEET 3 – SOLUTION

Exercise 1. Let (un)n≥1 and c be real numbers. Suppose limn→∞ un = c. Show that

lim
n→∞

u1 + · · ·+ un

n
= c.

Solution. Let ϵ > 0 and let m be such that for all n ≥ m we have |un − c| < ϵ. Then we
have

lim sup
n→∞

∣∣∣∣u1 + · · ·+ un

n
− c

∣∣∣∣ = lim sup
n→∞

1

n

∣∣u1 + · · ·+ un − nc
∣∣

(triangle inequality) ≤ lim sup
n→∞

∣∣∣∣u1 + · · ·+ um

n

∣∣∣∣+ lim sup
n→∞

(n−m)ϵ

n

≤ ϵ.

Since ϵ was arbitrary, this completes the proof.
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Exercise 2 [R]. Let (Xn)n≥1 be pairwise independent, positive, identically distributed
random variables with E(X1) = ∞. Show that

X1 + · · ·+Xn

n

a.s.−−−→
n→∞

∞.

Hint: for a > 0 consider the random variables min(Xn, a).
Solution.

Let a > 0 and observe that (Xn ∧ a)n≥1 are pairwise independent, positive, identical
random variables all bounded by a. By the strong law of large numbers we have almost
surely that

E(X1 ∧ a) = lim inf
n→∞

X1 ∧ a+ · · ·+Xn ∧ a

n
≤ lim inf

n

X1 + · · ·+Xn

n
.

Now, by monotone convergence E(X1∧a) → ∞ as a → ∞. Taking a countable sequence
a → ∞ shows that almost surely

lim inf
n→∞

X1 + · · ·+Xn

n
= ∞,

as desired.

Remark. The hypothesis that the Xn’s are positive is included because otherwise E(Xn)
is not well-defined in general.

Exercise 3. [Hard] Give an example of an iid sequence (Xn)n≥1 such that almost surely

lim sup
n→∞

X1 + · · ·+Xn

n
= ∞ and lim inf

n→∞

X1 + · · ·+Xn

n
= −∞.

Solution. Let (Yn)n≥1 be a sequence of iid positive random variables with E(Y1) = ∞. Let
(Zn)n≥1 be an iid sequence, independent of (Zn)n≥1, with P(Z1 = 1) = P(Z1 = −1) = 1/2.
For n ≥ 1 define Xn = Yn · Zn. For n ≥ 1, Sn = X1 + · · · + Xn. We show that almost
surely

lim sup
n→∞

Sn/n = ∞ and lim inf
n→∞

Sn/n = −∞.

We claim that
∀a > 0 P(∀n ≥ 1 Xn ∈ [−a, a]) = 0.

We complete the proof assuming this claim and then prove the claim. By the claim we
have

P

( ⋃
a∈N

{∀n ≥ 1 Sn/n ∈ [−a, a]}
)

= 0,

or in other words
P(|Sn/n| is bounded) = 0.

This is equivalent to

P({lim supSn/n = ∞} ∪ {lim inf Sn/n = −∞}) = 1.

Therefore, in particular, one of the events in the union above has positive probability.
By symmetry (more precisely, using the fact that (Xn) and (−Xn) have the same
distribution), we see that the events in the union have the same probability. So both
events have positive probability. Finally, observe that both events are in the tail sigma
algebra of (Xn)n≥1, an independent sequence. By the Kolmogorov 0-1 law, we conclude
that both events have probability 1, as required.
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Now, we prove the claim. Fix a > 0. For n ≥ 1 define the event An = {|Xn| ≥ 2an}.
Since E(|X1| = ∞), we also have ∑

n≥1

P(An) = ∞.

Since the An’s are independent, the second Borel-Cantelli lemma implies, in particular,
that one of the An’s occur almost surely. Now, suppose ω ∈ An. We show that ω /∈ {∀n ≥
1 Sn/n ∈ [−a, a]}. Indeed, if |Sn−1(ω)| > (n − 1)a, we are done and if |Sn−1(ω)| ≤
(n− 1)a, then |Sn(ω)| > na, so we are done anyway. This proves the claim and completes
the proof.
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Exercise 4. Let (Xn)n≥1 be an iid sequence of random variables that are uniformly
distributed in unit ball {x ∈ R2 : ∥x∥2 ≤ 1}. Define (Zn)n≥1 inductively by Z0 = (1, 0)
and Zn+1 = ∥Xn+1∥2 · Zn.

(i) Show that there exists c ∈ R such that
log ∥Zn∥2

n

a.s.−−−→
n→∞

c.

(ii) Compute the value of c.
(iii) What is the limit when Z0 = (2, 2)?

Solution.
(i) For simplicity we drop the subscript in ∥ · ∥2. Observe that for n ≥ 1

∥Zn∥ = ∥X1∥∥X2∥ · · · ∥Xn∥.
So

log ∥Zn∥ = log ∥X1∥+ · · ·+ log ∥Xn∥.
One can check that ∥X1∥ has density given by 2r10≤r≤1. Therefore, ∥Xi∥ ∈ (0, 1]
a.s., so log ∥Xi∥ is a random variable taking values in (−∞, 0], with expectation
given by

E(log ∥X1∥) =
∫ 1

0

2r log r dr = −1/2.

The desired conclusion now follows from the strong law of large numbers.
(ii) The strong law of large numbers says that c = E(∥X1∥) = −1/2.
(iii) In this case, we see that for all n ≥ 1,

∥Zn∥ =
√
8∥X1∥∥X2∥ · · · ∥Xn∥,

so
log ∥Zn∥ = log

√
8 + log ∥X1∥+ · · ·+ log ∥Xn∥.

So the limit is −1/2 in this case as well.

Remark: This exercise shows that for any starting point X0,
∥Zn∥ = exp(−n/2 + o(n)).
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Exercise 5. [R]
(i) Show that a family of random variables (Xi)i∈I defined on a probability space

(Ω,F ,P). Show this family is uniformly integrable if and only if it is bounded in
L1 (that is, there exists M ∈ R such that for all i ∈ I, E(|Xi|) ≤ M) and for all
ϵ > 0 there exists δ > 0 such that for all A ∈ F with P(A) ≤ δ and all i ∈ I we
have E(|Xi|1A) ≤ ϵ.

(ii) Let (Xi)i∈I and (Yj)j∈J be two uniformly integrable families of random variables.
Show that (Xi + Yj)(i,j)∈I×J is uniformly integrable.

Solution.
(i) First, suppose = (Xi)i∈I is uniformly integrable. To show that (Xi) is bounded in

L1 choose a > 0 such that for all i ∈ I, E(Xi1|Xi|≥a) < 1 to get
∀i ∈ I E(Xi) = E(Xi1|Xi|<a) + E(Xi1|Xi|≥a) ≤ a+ 1.

Fix ϵ > 0. Choose a such that for all i ∈ I, E(Xi1|Xi|≥a) < ϵ/2. Let δ = ϵ/(2a) and
let A ⊂ F be such that P(A) ≤ δ. Then for all i ∈ I we have

E(Xi1A) = E(Xi1A1|Xi|<a) + E(Xi1A1|Xi|≥a)

≤ a · E(1A1|Xi|<a) + E(Xi1|Xi|≥a)

≤ a · P(A) + ϵ/2

≤ ϵ/2 + ϵ/2 = ϵ.

Now, we prove the other direction. Let M be the uniform bound on the L1 norms
of Xi, that is for all i ∈ I E(|Xi|) ≤ M . Fix ϵ > 0. Choose δ > 0 such that for all
A ∈ F with P(A) < δ we have E(|Xi|1A) ≤ ϵ for all i ∈ I. Let a = M/δ and note
that by Markov’s inequality for all i ∈ I,

P(|Xi| ≥ a) ≤ E(|Xi|)/a ≤ δ.

So we get for all i ∈ I,

E(|Xi|1|Xi|≥a) ≤ ϵ,

which proves that (Xi)i∈I is uniformly integrable.
(ii) To show that (Xi + Yj)(i,j)∈I×J is uniformly integrable, we verify the criterion in the

previous part. First, we check that (Xi+Yj)(i,j)∈I×J is bounded in L1. Let M be such
that for all i ∈ I, E(|Xi|) < M and let N be such that for all j ∈ J , E(|Yj|) < N .
Then for all i ∈ I and j ∈ J we have E(|Xi + Yj|) ≤ E(|Xi|) + E(|Yj|) < M +N .

Next, fix ϵ > 0 using that (Xi) and (Yi) are uniformly integrable, choose δ1 > 0
for all A ∈ F with P(A) ≤ δ1 and all i ∈ I we have

E(|Xi|1A) ≤ ϵ/2

and choose δ2 such that for all A ∈ F with P(A) ≤ δ and all j ∈ J we have
E(|Yj|1A) ≤ ϵ/2.

Let δ = δ1 ∧ δ2 and let A ∈ F be such that P(A) ≤ δ. Then we have
∀(i, j) ∈ I × J E(|Xi + Yj|1A) ≤ E(|Xi|1A) + E(|Yj|1A) ≤ ϵ/2 + ϵ/2 = ϵ,

which completes the proof.
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