PROBABILITY THEORY (D-MATH) EXERCISE SHEET 4 – SOLUTION

Exercise 1. [R] Let $(X_n)_{n\geq 1}$, X be random variables such that $X_n \stackrel{P}{\to} X$ as $n \to \infty$. Show that the following are equivalent.

- (1) $(X_n)_{n\geq 1}$ is uniformly integrable.
- (2) (X_n) , X are all in L^1 and $E[|X_n|] \to E[|X|]$ as $n \to \infty$.

Solution. First, suppose that $(X_n)_{n\geq 1}$ is uniformly integrable. Then, by the main theorem in section 6 of chapter 3, we have that $X_n \xrightarrow{L^1} X$. So, by the triangle inequality, we have $|E(|X| - |X_n|)| \le E(|X - X_n|) \to 0,$

as required.

Second, suppose that $E(|X_n|) \to E(X)$. For $M \geq 1$, define the function $\psi_M : \mathbb{R}_{\geq 0} \to \mathbb{R}$ by

$$
\phi_M(x) = \begin{cases} x & \text{if } x \in [0, M-1], \\ 0 & \text{if } x \in [M, \infty), \\ \text{linear} & \text{if } x \in [M-1, M]. \end{cases}
$$
 (1)

Fix $\epsilon > 0$. By dominated convergence $E(\psi_M(|X|)) \to E(|X|)$ as $m \to \infty$. So we can choose M so that

$$
E(|X|) - E(\phi_M(|X|)) \le \epsilon/2.
$$

Next, for all $M \geq 1$, we have that $\psi_M(|X_n|) \stackrel{P}{\to} \psi_M(|X|)$ as $n \to \infty$, since ψ_M is continuous. Since ψ_M is bounded, the implication we proved in the first part of this exercise gives that

$$
E(\psi_M(|X_n|) \to E(\psi_M(|X|))
$$
 as $n \to \infty$.

Using this and the assumption that $E(|X_n|) \to E(X)$, for n large enough we have

$$
E(|X_n|1_{|X_n|\geq M}) \leq E(|X_n|) - E(\psi_M(X_n))
$$

\n
$$
\leq E(|X|) - E(\psi_M(|X|)) + \epsilon/2 \leq \epsilon.
$$

Choosing M larger if necessary we can ensure that $E(|X_n|1_{|X_n|\geq M}) \leq \epsilon$ for all $n \geq 1$, completing the proof.

Exercise 2. [R] Give an example of a sequence of random variables $(X_n)_{n\geq 1}$ that is not uniformly integrable and a random variable X such that

$$
X_n \stackrel{P}{\to} X
$$
 and $E(X_n) \to E(X)$,

as $n\to\infty.$

Solution. For $n\geq 2$ define

$$
X_n = \begin{cases} n & \text{w.p. } 1/n, \\ -n & \text{w.p. } 1/n, \\ 0 & \text{w.p. } 1 - 2/n. \end{cases}
$$

Then $X_n \stackrel{P}{\to} 0$ and $E(X_n) = 0$ for all n, but (X_n) is not uniformly integrable.

Exercise 3. Let $(X_n)_{n\geq 1}$ be a sequence of iid real-valued random variables. Show that if $E(|X1|) < \infty$, then the sequence $(\max(X_1, \ldots, X_n)/n)_{n \geq 2}$ is uniformly integrable. Is the converse true?

Solution. To show that the sequence $(\max(X_1, \ldots, X_n)/n)_{n\geq 2}$ is uniformly integrable note $n \geq 1$,

$$
\max(X_1,\ldots,X_n)\leq \frac{|X_1|+\cdots+|X_n|}{n}.
$$

We showed that the sequence is

$$
\left(\frac{|X_1| + \dots + |X_n|}{n}\right)_{n \ge 1}
$$

is uniformly integrable in section 3 of chapter 6 when we proved the $L¹$ version of the law of large numbers, which completes the proof.

The converse is true if the random variables are non-negative. In such cases, $0 \leq$ $X_1/2 \le \max(X_1, X_2)/2$, and as a result, $E(|X_1|) < \infty$.

In general, no! For example, if we take X_1 to be a random variable with density given by

$$
\frac{1}{|x|^2}1_{x\leq -1},
$$

we can observe that $\max(X_1, \ldots, X_n)$ has density

$$
\frac{n}{|x|^{n+1}}1_{x\leq -1},
$$

and as a result,

$$
E\left(\left|\frac{\max(X_1,\ldots,X_n)}{n}\right|^{3/2}\right) = \frac{1}{n^{3/2}} \int_1^\infty \frac{n x^{3/2}}{x^{n+1}} dx = \frac{1}{n^{3/2}} \frac{2n}{2n-3}
$$

.

Hence, the sequence $\left(\frac{\max(X_1,...,X_n)}{n}\right)_{n\geq 2}$ is bounded in $L^{3/2}$, so it is uniformly integrable, even though X_1 is not integrable.

Exercise 4. Consider the probability space defined by $\Omega = \{1, 2, 3, 4, 5, 6\}, \mathcal{F} = 2^{\Omega}$, and $\forall A \in \mathcal{F}$ P(A) = |A|/6.

Define random variables X and Y by

$$
X(\omega) = \omega \pmod{2}
$$
 and $Y(\omega) = \omega \pmod{3}$.

Is $\sigma(X, Y) = \sigma(X) \cup \sigma(Y)$?

Solution. It is easy to check that

$$
\sigma(X) = \{ \emptyset, \Omega, \{2, 4, 6\}, \{1, 3, 5\} \}
$$

and

 $\sigma(Y) = \{ \emptyset, \Omega, \{1, 4\}, \{2, 5\}, \{3, 6\}, \{1, 2, 4, 5\}, \{1, 3, 4, 6\}, \{2, 3, 5, 6\} \}.$

So $\sigma(X) \cup \sigma(Y)$ is not a sigma algebra, so it cannot be equal to $\sigma(X, Y)$. In fact, it is easy to check that $\sigma(X, Y) = 2^{\Omega}$.

Exercise 5. [R] Let $p \in [0,1]$. Let $(X_n)_{n\geq 1}$, Y be independent random variables with distributions specified as follows: $(X_n)_{n\geq 1}$ is an iid sequence of random variables with $P(X_1 = 1) = 1 - P(X_1 = -1) = p$ and $\overline{P(Y = 1)} = P(Y = -1) = 1/2$. For $n \ge 1$, define $Z_n = X_n \cdot Y$. For which values of $p \in [0,1]$ is the tail sigma algebra of $(Z_n)_{n\geq 1}$ trivial? Solution. We claim that the tail of (Z_n) is trivial if and only if $p = 1/2$. First, if $p = 1/2$ then (Z_n) is an iid sequence, so by Kolmogorov's $0-1$ law, the tail is trivial. Suppose

 $p > 1/2$. By the strong law of large numbers,

$$
\frac{Z_1 + \dots + Z_n}{n} = Y \cdot \left(\frac{X_1 + \dots + X_n}{n}\right) \xrightarrow{a.s.} Y(2p - 1) \quad \text{as } n \to \infty.
$$

Therefore, the tail event $\{\lim_{z \to \infty} (Z_1 + \cdots + Z_n)/n > 0\}$ has probability 1/2, showing that the tail sigma algebra of (Z_n) is non-trivial. An analogous argument in the case $p < 1/2$ completes the proof.

Remark. We say a sigma algebra A is trivial if for all $A \in \mathcal{A}$, $P(A) = 0$ or $P(A) = 1$.