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PROBABILITY THEORY (D-MATH)
EXERCISE SHEET 5 – SOLUTION

Exercise 1. Let α, β > 0 be real numbers. Let X ∼ Poi(α) and Y ∼ Poi(β) be
independent random variables. Show that X + Y ∼ Poi(α + β).
Solution. We compute the characteristic function of a Poi(α) random variable as follows.

ϕX(t) = E(eitX) =
∑
k≥0

eitke−ααk

k!

= e−α
∑
k≥0

(
eitα

)k
k!

= e−αeαe
it

= eα(e
it−1).

Since X and Y are independent we get

ϕX+Y (t) = ϕX(t)ϕY (t) = e(α+β)(eit−1),

which is the characteristic function of a Poi(α+β) random variable. Since the characterstic
function of a random variable characterises its law, the result follows.
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Exericse 2. [R] This exercise shows that the tail of a random variable is determined by
the behaviour of its characteristic function around zero. Let X be a real-valued random
variable and let ϕ be its characterisitic function. Show that

P(|X| > 2/u) ≤ 1

u

∫ u

−u

(
1− ϕ(t)

)
dt.

Solution.
1

u

∫ u

−u

(
1− ϕ(t)

)
dt =

1

u

∫ u

−u

∫
R
(1− eitx) dµX(x) dt

(Fubini for integrable functions) =
1

u

∫
R

∫ u

−u

(1− eitx) dt dµX(x)

=

∫
R
2− eiux − e−iux

iux
dµX(x)

= 2

∫
R
1− sinux

ux
dµX(x)

(∀x sinux ≤ ux) ≥ 2

∫
|x|>2/u

1− sinux

ux
dµX(x)

(∀x | sinux| ≤ 1) ≥ 2

∫
|x|>2/u

1− 1

|ux|
dµX(x)

(|ux| > 2) ≥
∫
|x|>2/u

dµX(x)

= P(|X| > 2/u).

2



Exercise 3. [R] Let X be a real-valued random variable such that its characteristic
function ϕX ∈ L1(R).

(i) Show that for all

∀ψ ∈ C∞
c E

(
ψ(X)

)
=

1

2π

∫
R
ψ(x)

∫
R
ϕ(t)e−itx dt dx.

(ii) Deduce that X has a density.

Solution.
(i) Let ψ ∈ C∞

c . From section 3 of chapter 5 and using that ϕX ∈ L1 in the step with
Fubini’s theorem we get:

E
(
ψ(X)

)
=

1

2π

∫
R
ψ̂(t)ϕX(t) dt

=
1

2π

∫
R
ϕX(t)

∫
R
ψ(x)eixt dt

(Fubini for integrable functions) =
1

2π

∫
R
ψ(x)

∫
R
ϕX(t)e

ixt dt

(t 7→ −t) =
1

2π

∫
R
ψ(x)

∫
R
ϕX(t)e

−ixt dt.

(ii) Setting

f(x) =

∫
R
ϕX(t)e

−ixt dt,

the formula we just proved shows that f(x) is the density of X. (It is also true,
moreover, that f is continuous and bounded.)
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Exercise 4. Let X0, X1, . . . be iid random variables with
P(X0 = 1) = P(X0 = −1) = 1/2.

For n ≥ 1 define
Yn = X0 · · ·Xn.

Let
X = σ(X1, X2, . . .) and Yn = σ(Yn, Yn+1, . . .).

The aim of this exercise is to show that⋂
n≥1

σ(X , Yn) and σ

(
X ,

⋂
n≥1

Yn

)
are not equal.

(i) Show that σ(X0) ⊂ σ(X , Yn) for each n ≥ 1.
(ii) Show that

⋂
n≥1 Yn is trivial.

(iii) Show that σ(X0) is independent of σ
(
X ,

⋂
n≥1 Yn

)
. (Hint: check independence on a

suitable π-system.)
(iv) Conclude.

Solution.
(i) This follows from the formula X0 = YnX1X2 · · ·Xn.
(ii) Observe that (Yn)n≥1 is an independent sequence (actually iid) of random variables,

so the Kolomogorov implies that its tail is trivial.
(iii) Consider the following family of subsets.

S =

{
A ∩B : A ∈ X , B ∈

⋂
n≥1

Yn

}
.

It is easy to see that this set is a π−system (that is, it is closed under finite
intersections), and furthermore taking A or B to be Ω, we see that S contains both
X and

⋂
n≥1 Yn. So

σ(S) = σ

(
X ,

⋂
n≥1

Yn

)
.

We show that S is independent of σ(X0). Since (Xn)n≥1 is iid σ(X0) is independent
of X . We use this fact in what follows. Now, let C ∈ S and write C = A∩B, where
A ∈ X and B ∈

⋂
n≥1 Yn. By (ii) we have P(B) = 0 or P(B) = 1. If P(B) = 0 we

have
0 = P(S ∩ C) = P(S)P(C).

If P(B) = 1 we have
P(S ∩ C) = P(S ∩ A) = P(S)P(A) = P(S)P(C).

Finally, Dynkin’s lemma completes the proof.
(iv) We have shown that

σ(X0) ⊂
⋂
n≥1

σ(X , Yn)

and that
σ(X0) is indendent of σ

(
X ,

⋂
n≥1

Yn

)
.

Since σ(X0) is non-trivial, the two sigma algebras cannot be equal.
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