Prof. Vincent Tassion HS 2024

PROBABILITY THEORY (D-MATH)
EXERCISE SHEET 13 — SOLUTION

Exercise 2. Let (X,,),>1 be a an iid sequence of random variables with

P(X, =1)=P(X, = —1) = 1/2.

(i) Show that there exists a constant ¢ > 0 such that for all n > 1 and positive real
numbers aq, ..., a, > 0 we have

P(G1X1+"' +CLan = 0) <

Bk

(ii) Show that there exists a constant ¢ > 0 such that for all n > 1 we have

C

Solution.

(1)

This result requires a result outside the course called Sperner’s theorem. (This
exercise is not relevant for exam preparation.)

In this exercise, we identify elements of {—1,1}" with subsets of {1,...,n} by
identifying x € {—1,1}" with {i : x; = 1}.

Fix a positive integer n and positive real numbers ay, ..., a,. Let

F = {(:cl,...,xn) e{-L1}"rayxy + - + apz, :0},
Now, suppose z,y € F are such that x is a strict subset of y, then we have
0=a1z1+ - +apx, < a1y1 + - + apYn,

which is a contradiction. Sperner’s theorem (https://en.wikipedia.org/wiki/
Sperner’,27s_theorem) then implies that

1= (i)

Pl X1+ 4+ a, X, =0) = |F|/2" < ¢//n,

for some universal constant ¢ > 0.
First, by independence the characteristic function of X; + 2X, + ---nX,, is given
by 15—, cos(kt). Next, using section 5 of chapter 5 we have

So we have

P(X; 42X+ - +nX,) / Hcos (kt)

(cos(t) = cos( / H cos(kt) dt


https://en.wikipedia.org/wiki/Sperner%27s_theorem
https://en.wikipedia.org/wiki/Sperner%27s_theorem

Now, considering the change of variable ¢ — 7m — ¢t and using the fact that
cos(km — kt) = (—=1)* cos(kt) we get

_ n/2 n
l/ Hcos(k;t) dt = %/0 H(—l)kcos(k:t) dt.

T Jn/2 2 k=1
So it is enough to show that
1 w/2 N
—/ Hcos(k‘t) dt < en™3/2,
0

T
k=1
Now, we use the standard bound cos(f) < 1 — 0%/4 < exp(—6?/4) for 6 € [0,7/2].

We obtain
w/2 N w/2 n
/ Hcos(kt) dt < / exp(—t Z k*/4) dt
0 k=1 0 k=1
n w/2
(Z K <n’) < / exp(—n’t?/4) dt
k=1 0

w/2
= n_3/2/ n%2 exp(—n’t?/4)
0

< en~¥?,

where we used in the final inequality that n3/2exp(n®t?/4) is the density of a
N(0,2n73) random variable up to constants. This completes the proof.



Exercise 3 (The moment problem). [R]
In this exercise, we only consider random variables that are in L” for all p > 1. We say
that X is determined by its moments if for all random variables Y such that

Vn>1 E(X")=EY™"), (1)

we have ux = py.

(i) We first give an example of a random variable that is not determined by its moments.
Let

X ~e? where Z ~ N(0,1).
Let Y be a random variable taking values in {e* : k € Z} defined as follows:
e—k2/2

VkeZ PY =¢") = A where A = Ze‘kQ/Q.
keZ

Show that
Vn>1 BE(X") =EY") ="/

(ii) Let X be a random variable such that there exists ¢ > 0 such that E(eﬂx‘) < 00.
We show that then X is determined by its moments. First, check that X € L? for

all p > 1 and ¢x, the characteristic function of X, is infinitely differentiable on R.
(iii) Fix @ € R. Show that

Ve € (—t,1) ox(a+e) :Zk_
k=0

(iv) Let ¢y be the characteristic function of Y. Show that

Ve e (—t,t) ¢x(e) = dy(e).
(v) Show that ¢x(€) = ¢y () for all € € R. Conclude that ux = py.

Solution.
Let n > 1. Then we have

nz 722/2

BX") = Be) = —— /
en’/2
- m .

2
en /2

N V2T Jr

— /2,

e~ (z=n)?/2 1.

e %12 4y

We also have



— €n2/2.

(i) X isin LP for every p > 1 because for every p, |z|? < e'?l for |z| large enough. The
fact that ¢x is infinitely differntiable is a consequence of the theorem in section 5 of
chapter 5. We also use the following fact later:

B(elY1/?) < .

To show this first note that E(|Y|") = E(|X|") for even n and and E(]Y]") <
E(|Y|"™) = E(JX|**!) for odd n. Second, observe that

B(ellY1/2) = E(Z(t/g)ﬂwk /k:!)

k>0

=D (/2 E(Y[*)/K!

k>0

< D /2PE(XPR)/(2R) 4 Y (/2 E(IXPR) /(2K + 1)),

k>0 k>0

t\X|>

which is finite because E(e < 0o. In what follows, we may assume that ¢ > 0 is

such that
E()), E(e™) < 0o.

(ii) Let a € R and let € € (—t,t). For n > 1, using section 5 of chapter 5 we have

n ok
ox(a+e) = ¥ (@)
k=0

n k
i(a+€ € . ia
— |E(e( +toX _ H(ZX)ke X)]
k=0
. . n gk
S E(|ezaXHezeX . H(ZX)k‘)v
k=0

which converges to 0 as n — oo, as E(e*X) < co.
(iii) We note that at an analogous formula to the one in the previous part holds for YV
by the same argument. Now, since

$(0) = E((iX)F) = E((iY)") = ¢{(0),

the result follows from the formula in the previous part.
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(iv) We have that ¢x(€) = ¢y(€) for all € € (—t,t). This implies that for all & > 0,
gbgl;)(t) = gf) (t) and gbg?)(—t) = gf)(—t). Applying the argument in the previous
part, we then get that ¢x(€) = ¢y (€) for all € € (—2¢,2t). Continuing like this we
inductively obtain that ¢x = ¢y, so ux = py, as desired.



Exercise 1. Let (X,,),>1 be iid random variables in L? such that X; has the same law
as — X1, P(X; =0) >0, and X; € Z a.s. For n > 1, define

S, =X14+--+X,.
Show that there exists ¢ > 0 such that
P(S, =0) ~ ——.

n—00 \/ﬁ

(For two sequences (a,) and (b,) of real numbers, we write a,, ~ b, if a,/b, — 1 as
n—oo

n — 00.)

Solution.
To be added. (The solution we had in mind had a mistake.)
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