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PROBABILITY THEORY (D-MATH)
EXERCISE SHEET 13 – SOLUTION

Exercise 2. Let (Xn)n≥1 be a an iid sequence of random variables with

P(X1 = 1) = P(X1 = −1) = 1/2.

(i) Show that there exists a constant c > 0 such that for all n ≥ 1 and positive real
numbers a1, . . . , an > 0 we have

P(a1X1 + · · ·+ anXn = 0) ≤ c√
n
.

(ii) Show that there exists a constant c > 0 such that for all n ≥ 1 we have

P(X1 + 2X2 + · · ·+ nXn = 0) ≤ c

n3/2
.

Solution.
(1) This result requires a result outside the course called Sperner’s theorem. (This

exercise is not relevant for exam preparation.)
In this exercise, we identify elements of {−1, 1}n with subsets of {1, . . . , n} by

identifying x ∈ {−1, 1}n with {i : xi = 1}.
Fix a positive integer n and positive real numbers a1, . . . , an. Let

F =
{
(x1, . . . , xn) ∈ {−1, 1}n : a1x1 + · · ·+ anxn = 0

}
.

Now, suppose x, y ∈ F are such that x is a strict subset of y, then we have

0 = a1x1 + · · ·+ anxn < a1y1 + · · ·+ anyn,

which is a contradiction. Sperner’s theorem (https://en.wikipedia.org/wiki/
Sperner%27s_theorem) then implies that

|F| ≤
(

n

⌊n/2⌋

)
.

So we have

P(a1X1 + · · ·+ anXn = 0) = |F|/2n ≤ c/
√
n,

for some universal constant c > 0.
(2) First, by independence the characteristic function of X1 + 2X2 + · · ·nXn is given

by
∏n

k=1 cos(kt). Next, using section 5 of chapter 5 we have

P(X1 + 2X2 + · · ·+ nXn) =
1

2π

∫ π

−π

n∏
k=1

cos(kt) dt

(
cos(t) = cos(−t)

)
=

1

π

∫ π

0

n∏
k=1

cos(kt) dt

=
1

π

∫ π/2

0

n∏
k=1

cos(kt) dt+
1

π

∫ π

π/2

n∏
k=1

cos(kt) dt
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Now, considering the change of variable t → π − t and using the fact that
cos(kπ − kt) = (−1)k cos(kt) we get

1

π

∫ π

π/2

n∏
k=1

cos(kt) dt =
1

π

∫ π/2

0

n∏
k=1

(−1)k cos(kt) dt.

So it is enough to show that

1

π

∫ π/2

0

n∏
k=1

cos(kt) dt ≤ cn−3/2.

Now, we use the standard bound cos(θ) ≤ 1− θ2/4 ≤ exp(−θ2/4) for θ ∈ [0, π/2].
We obtain ∫ π/2

0

n∏
k=1

cos(kt) dt ≤
∫ π/2

0

exp(−t2
n∑

k=1

k2/4) dt

( n∑
k=1

k2 ≤ n3
)

≤
∫ π/2

0

exp(−n3t2/4) dt

= n−3/2

∫ π/2

0

n3/2 exp(−n3t2/4)

≤ cn−3/2,

where we used in the final inequality that n3/2 exp(n3t2/4) is the density of a
N (0, 2n−3) random variable up to constants. This completes the proof.
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Exercise 3 (The moment problem). [R]
In this exercise, we only consider random variables that are in Lp for all p ≥ 1. We say

that X is determined by its moments if for all random variables Y such that

∀n ≥ 1 E(Xn) = E(Y n), (1)

we have µX = µY .

(i) We first give an example of a random variable that is not determined by its moments.
Let

X ∼ eZ where Z ∼ N (0, 1).

Let Y be a random variable taking values in {ek : k ∈ Z} defined as follows:

∀k ∈ Z P(Y = ek) =
e−k2/2

Λ
where Λ =

∑
k∈Z

e−k2/2.

Show that

∀n ≥ 1 E(Xn) = E(Y n) = en
2/2.

(ii) Let X be a random variable such that there exists t > 0 such that E
(
et|X|) < ∞.

We show that then X is determined by its moments. First, check that X ∈ Lp for
all p ≥ 1 and ϕX , the characteristic function of X, is infinitely differentiable on R.

(iii) Fix a ∈ R. Show that

∀ϵ ∈ (−t, t) ϕX(a+ ϵ) =
∞∑
k=0

ϵk

k!
ϕ
(k)
X (a).

(iv) Let ϕY be the characteristic function of Y . Show that

∀ϵ ∈ (−t, t) ϕX(ϵ) = ϕY (ϵ).

(v) Show that ϕX(ϵ) = ϕY (ϵ) for all ϵ ∈ R. Conclude that µX = µY .

Solution.
Let n ≥ 1. Then we have

E(Xn) = E(enZ) =
1√
2π

∫
R
enze−z2/2 dz

=
en

2/2

√
2π

∫
R
e−(z−n)2/2 dz

=
en

2/2

√
2π

∫
R
e−z2/2 dz

= en
2/2.

We also have
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E(Y n) =
1

Λ

∑
k∈Z

ekne−k2/2

=
en

2/2

Λ

∑
k∈Z

e−(k−n)2/2

=
en

2/2

Λ

∑
k∈Z

e−k2/2

= en
2/2.

(i) X is in Lp for every p ≥ 1 because for every p, |x|p ≤ et|x| for |x| large enough. The
fact that ϕX is infinitely differntiable is a consequence of the theorem in section 5 of
chapter 5. We also use the following fact later:

E(et|Y |/2) < ∞.

To show this first note that E(|Y |n) = E(|X|n) for even n and and E(|Y |n) ≤
E(|Y |n+1) = E(|X|n+1) for odd n. Second, observe that

E(et|Y |/2) = E

(∑
k≥0

(t/2)k|Y |k/k!
)

=
∑
k≥0

(t/2)kE(|Y |k)/k!

≤
∑
k≥0

(t/2)2kE(|X|2k)/(2k)! +
∑
k≥0

(t/2)2k+1E(|X|2k+2)/(2k + 1)!,

which is finite because E(et|X|) < ∞. In what follows, we may assume that t > 0 is
such that

E(et|Y |),E(et|X|) < ∞.

(ii) Let a ∈ R and let ϵ ∈ (−t, t). For n ≥ 1, using section 5 of chapter 5 we have

|ϕX(a+ ϵ)−
n∑

k=0

ϵk

k!
ϕ
(k)
X (a)|

= |E
(
ei(a+ϵ)X −

n∑
k=0

ϵk

k!
(iX)keiaX

)
|

≤ E

(
|eiaX ||eiϵX −

n∑
k=0

ϵk

k!
(iX)k|

)
,

which converges to 0 as n → ∞, as E(eiϵ|X|) < ∞.
(iii) We note that at an analogous formula to the one in the previous part holds for Y

by the same argument. Now, since

ϕ
(k)
X (0) = E((iX)k) = E((iY )k) = ϕ

(k)
Y (0),

the result follows from the formula in the previous part.
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(iv) We have that ϕX(ϵ) = ϕY (ϵ) for all ϵ ∈ (−t, t). This implies that for all k ≥ 0,
ϕ
(k)
X (t) = ϕ

(k)
Y (t) and ϕ

(k)
X (−t) = ϕ

(k)
Y (−t). Applying the argument in the previous

part, we then get that ϕX(ϵ) = ϕY (ϵ) for all ϵ ∈ (−2t, 2t). Continuing like this we
inductively obtain that ϕX = ϕY , so µX = µY , as desired.
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Exercise 1. Let (Xn)n≥1 be iid random variables in L2 such that X1 has the same law
as −X1, P(X1 = 0) > 0, and X1 ∈ Z a.s. For n ≥ 1, define

Sn = X1 + · · ·+Xn.

Show that there exists c > 0 such that

P(Sn = 0) ∼
n→∞

c√
n
.

(For two sequences (an) and (bn) of real numbers, we write an ∼
n→∞

bn if an/bn → 1 as
n → ∞.)
Solution.

To be added. (The solution we had in mind had a mistake.)
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