PROBABILITY THEORY (D-MATH) EXERCISE SHEET 6

Exercise 1. Let (E, d) and (E', d') be metric spaces and let $f : E \to E'$ be a continuous function. Let $(X_n)_{n>1}, X$ be random variables taking values in E such that

$$X_n \xrightarrow{(d)} X$$

Show that

$$f(X_n) \xrightarrow{(d)} f(X).$$

Exercise 2. [R] Let $p \in (0, 1)$ and let $(X_n)_{n \ge 1}$ be a sequence of random variables where $X_n \sim \text{Geo}(p/n)$. Show that X_n/n converges in distribution to a random variable Y. What is the distribution of Y?

Exercise 3. [R] Let $(X_n)_{n\geq 1}$ be a sequence of real-valued random variables where X_n has density p_n (with respect to Lebesgue measure Leb). Suppose there is a measurable function such that for Leb-almost all $x \in \mathbb{R}$ we have

$$p_n(x) \to p(x)$$
 as $n \to \infty$.

- (i) Is p always the density of some random variable? Justify your answer.
- (ii) Assume that there is an integrable measurable function (with respect to Leb)

$$q: \mathbb{R} \to \mathbb{R}_{\geq 0}$$

such that for all $n \ge 1$ and Leb-almost all x we have

$$p_n(x) \le q(x).$$

Then show that p is the density of some random variable X and that X_n converges in distribution to X.

Exercise 4. Let $(X_n)_{n\geq 1}$ be a sequence of real-valued random variables converging in distribution to a uniformly distributed random variable in [0, 1]. Let $(Y_n)_{n\geq 1}$ be a sequence of real-valued random variables converging in probability to 0. Show that

$$P(X_n < Y_n) \to 0 \text{ as } n \to \infty.$$

Submission of solutions. Hand in your solutions by 18:00, 8/11/2024 following the instructions on the course website

Note that only the exercises marked with [R] will be corrected.