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PROBABILITY THEORY (D-MATH)
EXERCISE SHEET 7 – SOLUTION

Exercise 1. Let (E, d) and (E ′, d′) be metric spaces and let f : E → E ′ be a continuous
function. Let (Xn)n≥1, X be random variables taking values in E such that

Xn
(d)−→ X.

Show that
f(Xn)

(d)−→ f(X).

Solution. Let g : E ′ → R be continuous and bounded. Then g ◦ f : E → R is continuous
and bounded and because Xn

(d)−→ X we have
E(g(f(Xn))] → E[g(f(X))],

which proves that f(Xn)
(d)−→ f(X).
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Exercise 2. [R] Let p ∈ (0, 1) and let (Xn)n≥1 be a sequence of random variables where
Xn ∼ Geo(p/n). Show that Xn/n converges in distribution to a random variable Y . What
is the distribution of Y ?

Solution. We claim that Xn/n
(d)−→ Y , where Y ∼ Exp(1). To show this, we use the

characterisation of convergence in distribution for real random variables, that is, we show
that for all t ∈ R,

FXn/n(t) → FY (t).

For t ≤ 0, 0 = FXn/n(t) = FY (t) for all n so the convergence is true trivially. Let t > 0.
Then

FXn/n(t) = P(Xn ≤ tn) = 1− P(Xn > tn) = 1− (1− p/n)⌊tn⌋ → 1− e−t,

which is equal to FY (t). This completes the proof.
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Exercise 3. [R] Let (Xn)n≥1 be a sequence of real-valued random variables where Xn

has density pn (with respect to Lebesgue measure Leb). Suppose there is a measurable
function such that for Leb-almost all x ∈ R we have

pn(x) → p(x) as n → ∞.

(i) Is p always the density of some random variable? Justify your answer.
(ii) Assume that there is an integrable measurable function (with respect to Leb)

q : R → R≥0

such that for all n ≥ 1 and Leb-almost all x we have
pn(x) ≤ q(x).

Then show that p is the density of some random variable X and that Xn converges
in distribution to X.

Solution.
(i) No, for instance consider Xn ∼ Unif[0, 1/n]. Then Xn has density n1[0,1/n] which

converges almost everywhere to the constant 0 function, but 0 is not a density.
(ii) First, we show that p is a density. Being a almost everywhere pointwise limit of non-

negative functions it is non-negative and furthermore by dominated convergence we
have ∫

R
p(x)dx = lim

n→∞

∫
R
pn(x)dx = 1,

showing that p is a density of some random varible X. Furthermore, for all t ∈ R,
again by dominated convergence, we have

FX(t) = P(X ≤ t) =

∫ t

−∞
p(x)dx = lim

n→∞

∫ t

−∞
pn(x)dx = lim

n→∞
FXn(t),

which shows that Xn
(d)−→ X (using the characterisation of convergence in distribution

on R).
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Exercise 4. Let (Xn)n≥1 be a sequence of real-valued random variables converging in
distribution to a uniformly distributed random variable in [0, 1]. Let (Yn)n≥1 be a sequence
of real-valued random variables converging in probability to 0. Show that

P(Xn < Yn) → 0 as n → ∞.

Solution. Let ϵ > 0

P(Xn < Yn) = P({Xn < Yn, |Yn| > ϵ} ∪ {Xn < Yn, |Yn| ≤ ϵ})
(union bound) ≤ P(Xn < Yn, |Yn| > ϵ) + P(Xn < Yn, |Yn| ≤ ϵ)

≤ P(|Yn| > ϵ) + P(Xn ≤ ϵ)

−→ 0 + ϵ,

where we used that Yn
(P)−−→ 0 and Xn

(d)−→ Unif[0, 1] in the last line. Since ϵ was arbitrary,
this completes the proof.
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