PROBABILITY THEORY (D-MATH) EXERCISE SHEET 8

Exercise 1. [R] Let (Ω, \mathcal{F}, P) be a probability space and let $\mathcal{A} = {\Omega_1, \Omega_2, \ldots, \Omega_n}$ be a partition of Ω . Let X be a real-valued $\sigma(\mathcal{A})$ -measurable random variable. Show that there exist real numbers $\lambda_1, \ldots, \lambda_n$ such that

$$X = \sum_{i=1}^{n} \lambda_i \mathbf{1}_{\Omega_i}$$

Exercise 2. [R] Fix $n \ge 1$. Let $X \sim \text{Unif}[0, 1]$ and let $Y = \lfloor n \cdot X \rfloor$. Compute E(X|Y).

Exercise 3. Fix $n \ge 2$. Let X, Y be two numbers chosen uniformly at random from $\{1, 2, ..., n\}$ without replacement. Define the event $A = \{Y > X\}$.

- (i) Compute E(Y|A).
- (ii) Compute $E(\max(X, Y) | \min(X, Y))$.

Exercise 4. Let X, Y be real-valued random variables taking finitely many values. Define the random variable

$$\operatorname{Var}(X|Y) = \operatorname{E}(X^2|Y) - \operatorname{E}(X|Y)^2.$$

Show that

$$\operatorname{Var}(X) = \operatorname{E}(\operatorname{Var}(X|Y)) + \operatorname{Var}(\operatorname{E}(X|Y))$$

Exercise 5. Let $(X_n)_{n\geq 1}, (Y_n)_{n\geq 1}, X, Y$ be random variables. Assume that for all $n \geq 1$, X_n and Y_n are independent, and that X and Y are independent. Suppose

$$X_n \xrightarrow{(d)} X$$
 and $Y_n \xrightarrow{(d)} Y_n$

Then show that

$$(X_n, Y_n) \xrightarrow{(d)} (X, Y).$$

Submission of solutions. Hand in your solutions by 18:00, 22/11/2024 following the instructions on the course website

Note that only the exercises marked with [R] will be corrected.