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PROBABILITY THEORY (D-MATH)
EXERCISE SHEET 8 – SOLUTION

Exercise 1. [R] Let (Ω,F ,P) be a probability space and let A = {Ω1,Ω2, . . . ,Ωn} be
a partition of Ω. Let X be a real-valued σ(A)-measurable random variable. Show that
there exist real numbers λ1, . . . , λn such that

X =
n∑

i=1

λi1Ωi
.

Solution.
First note that

σ(A) =

{⋃
i∈A

Ωi : A ⊂ [n]

}
.

Indeed, every element of the above set is a union of finitely many sets in A and is a
sigma-algebra containing A. We observe that since the Ωi’s are disjoint, for all i ∈ [n]
and S ∈ σ(A), either Ωi ∩ S = ∅ or Ωi ⊂ S.

Now, for all i ∈ [n] we show that X is constant on Ωi. Suppose not. Then there exists
ω, ω′ ∈ Ωi such that X(ω) ̸= X(ω′). Then S = X−1(X(ω)) ∩ Ωi ̸= ∅ but X−1(X(ω))
does not contain Ωi. Then by our description of σ(A), S is not contained in σ(A), which
contradicts the observation above. So X is constant on each Ωi. Let λi be the value X
takes on Ωi. Therefore, X =

∑n
i=1 λi1Ωi

, as required.
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Exercise 2. [R] Fix n ≥ 1. Let X ∼ Unif[0, 1] and let Y = ⌊n ·X⌋. Compute E(X|Y ).
Solution. We use the definition of conditional expectation for discrete random variables
(see chapter 9). Note that Y belongs to S = {0, . . . , n − 1} almost surely and for each
k ∈ S,

P(Y = k) = P(X ∈ [k/n, (k + 1)/n)) = 1/n.

Let k ∈ S. Then

E(X|Y = k) =
E(X1Y=k)

P(Y = k)

= nE(X1X∈[k/n,(k+1)/n)])

= n

∫ (k+1)/n

k/n

x dx

= k/n+ 1/(2n).

So
E(X|Y ) = Y/n+ 1/(2n).
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Exercise 3. Fix n ≥ 2. Let X, Y be two numbers chosen uniformly at random from
{1, 2, . . . , n} without replacement. Define the event A = {Y > X}.

(i) Compute E(Y |A).
(ii) Compute E

(
max(X, Y )|min(X, Y )

)
.

Solution.
Formally, the definition of (X, Y ) is a uniform element of {(i, j) ∈ [n]2 : i ̸= j}.
(i) First, note that P(A) = 1/2, for instance because (X, Y ) has the same distribution

as (Y,X). We get

E(Y |A) = E(Y 1A)

P(A)

=
2

n(n− 1)

n−1∑
i=1

n∑
j=i+1

j

=
2

n(n− 1)

n−1∑
i=1

(n+ i+ 1)(n− i)/2

=
1

n(n− 1)

n−1∑
i=1

n2 + n− i2 − i

=
1

n(n− 1)

(
n2(n− 1) + n(n− 1)− (n− 1)n(2n− 1)/6− n(n− 1)/2

)
= n+ 1− (2n− 1)/6− 1/2

= (2n+ 2)/3.

Remark. Note that E(Y ) ∼ n/2 but after conditioning that Y is bigger than X,
the expactation goes all the way up to ∼ 2n/3.
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(ii) Note that min(X, Y ) takes values in {1, . . . , n − 1}. Fix k ∈ {0, . . . , n − 1}. Note
that

P(min(X, Y ) = k) =
|{(k, i) : k + 1 ≤ i ≤ n}| ∪ |{(k, i) : k + 1 ≤ i ≤ n}|

n(n− 1)
= 2(n−k)/(n(n−1)).

In the following calculation we will use the fact that for i ∈ {k + 1, . . . , n}

P(max(X, Y ) = i,min(X, Y ) = k) =
2

n(n− 1)
.

We get

E(max(X, Y )|min(X, Y )) =
n(n− 1)

2(n− k)

n∑
i=k+1

2i/n(n− 1)

= (n+ k + 1)/2.

Therefore,
E(max(X, Y )|min(X, Y )) = (min(X, Y ) + n+ 1)/2.
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Exercise 4. Let X, Y be real-valued random variables taking finitely many values.
Define the random variable

Var(X|Y ) = E(X2|Y )− E(X|Y )2.

Show that
Var(X) = E

(
Var(X|Y )

)
+Var

(
E(X|Y )

)
.

Solution. Since X takes finitely many values, it is bounded, so it is in L2. Therefore,
all the quantities in the exercise are well-defined. We have

E
(
Var(X|Y )

)
+Var

(
E(X|Y )

)
= E

(
E(X2|Y )− E(X|Y )2

)
+ E

(
E(X|Y )2

)
− E

(
E(X|Y )

)2
= E

(
E(X2|Y )

)
− E

(
− E(X|Y )2

)
+ E

(
E(X|Y )2

)
− E(X)2

= E(X2)− E(X)2

= Var(X).

Remark. It was not important that X, Y take finitely many values, we just needed
that X is in L2.
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Exercise 5. Let (Xn)n≥1, (Yn)n≥1, X, Y be real-valued random variables. Assume
that for all n ≥ 1, Xn and Yn are independent, and that X and Y are independent.
Suppose

Xn
(d)−→ X and Yn

(d)−→ Y.

Then show that
(Xn, Yn)

(d)−→ (X, Y ).

Solution.
We use the characterisation for convergence in distribution using characteristic

functions. Since Xn
(d)−→ X and Yn

(d)−→ Y we have that
∀t ∈ R ϕXn(t) → ϕX(t) and ϕYn(t) → ϕY (t).

By independence, we have
∀(s, t) ∈ R2 ϕ(Xn,Yn)(s, t) = ϕXn(s)ϕYn(t) and ϕ(X,Y )(s, t) = ϕX(s)ϕY (t).

So we get for all (s, t) ∈ R2 that
ϕ(Xn,Yn)(s, t) → ϕ(X,Y )(s, t),

which completes the proof.
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