
Prof. Vincent Tassion HS 2024

PROBABILITY THEORY (D-MATH)
EXERCISE SHEET 1

Exercise 1. This exercise shows that a simple random walk on Z cannot be confined to

a strip forever. Let (Xn)n→1 be an iid sequence of random variables defined by

P(X1 = 1) = P(X1 = →1) = 1/2.

For n ↑ 1, define Sn = X1 + · · ·+Xn. Let k ↑ 1 be a fixed integer. Show that

P
(
↓n ↑ 1 0 ↔ Sn ↔ k

)
= 0.

Exercise 2 [R]. Let (Xn)n→1 be an iid sequence of random variables uniformly distributed

in {→1, 1, 2,→2}. For n ↑ 1, let Sn = X1 + · · ·+Xn. Fix n ↑ 1.

(i) Compute E(Sn) and Var(Sn).
(ii) Prove that

P(|Sn| ↑ 2
↗
n) ↔ 3

4
.

(iii) Prove that

↓k ↘ Z P(Sn = k) = P(Sn = →k).

(iv) Provethat

↓k ↘ Z P(X1 + · · ·+Xn = k) = P(Xn+1 + · · ·+X2n = k).

(v) Deduce that

↓k ↘ Z P(S2n = k) =
∑

i↑Z

P(Sn = i) · P(Sn = k → i).

(vi) Apply the Cauchy-Schwarz inequality to show that

↓k ↘ Z P(S2n = k) ↔ P(S2n = 0).

(vii) Deduce that

P(S2n = 0) ↑ 1

50
↗
n
.

Exercise 3. Let (Xn)n→1 be iid Exp(1) random variables. Show that

lim sup
n↓↔

Xn

log n
= 1 a.s.

Exercise 4. Let (An)n→1 be a sequence of events such that

lim
n↓↔

P(An) = 0 and

∑

n→1

P(An \ An+1) < ≃.

Prove that P(infinitely many An occur) = 0.

Submission of solutions. Hand in your solutions by 18:00, 27/09/2024 following the

instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/
Note that only the exercises marked with [R] will be corrected.
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Exercise 1. Give an example of a subsequence (n(k))k→1 such that

Xn(k)
a.s.→→↑ 0,

where

(i) (Xn)n→1 is iid with X1 ↓ Ber(1/n).
(ii) (Xn)n→1 is the typesetter sequence.

Exercise 2 [R]. Let (E, d) and (E ↑, d↑) be metric spaces. Let (Xn)n→1 and X be random

variables taking values in E.

(i) (Subsubsequence lemma) Show that Xn converges to X in probability if and only if

for every subsequence (n(k))k→1 there exists a subsubsequence (n(k(l))l→1 such that

Xn(k(l)) converges to X almost surely as l ↑ ↔.

(ii) (Continuous mapping) Let f : E ↑ E ↑
be a continuous function. First, suppose

Xn ↑ X a.s. and show that f(Xn) ↑ f(X) a.s. Next, suppose Xn ↑ X in

probability and show that f(Xn) ↑ f(X) in probability.

Exercise 3 [R]. Let (Yn)n→1 be a sequence of independent random variables such that

Yn ↓ Exp(ωn), where (ωn)n→1 is a sequence of positive real numbers such that ωn ↑ ↔
as n ↑ ↔.

(i) Show that Yn ↑ 0 in probability.

(ii) Let ωn = 10 log n. Does Yn converge to 0 almost surely?

(iii) Let ωn = (log n)2. Does Yn converge to 0 almost surely?

Exercise 4. Define the space of functions

L0 = {X : ! ↑ E measurable}/ ↓,

where the equivalence relation ↓ is defined by

X ↓ Y ↗↘ X = Y a.s.

(i) Show that D(X, Y ) = E
(
1 ≃ d(X, Y )

)
defines a metric on L0

.

(ii) Assume E is complete. Show that (L0, D) is complete.

Exercise 5. Let (Xn)n→1 be an iid sequence of random variables with E(|X1|) < ↔.

Define

Sn =
n∑

i=1

XiXi+1.

Show that Sn/n converges almost surely.

Submission of solutions. Hand in your solutions by 18:00, 04/10/2024 following the

instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/
Note that only the exercises marked with [R] will be corrected.
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Exercise 1. Let (un)n→1 and c be real numbers. Suppose limn↑↓ un = c. Show that

lim
n↑↓

u1 + · · ·+ un

n
= c.

Exercise 2. [R] Let (Xn)n→1 be pairwise independent, positive, identically distributed

random variables with E(X1) = →. Show that

X1 + · · ·+Xn

n
a.s.↑↑↑↓

n↑↓
→.

Hint: for a > 0 consider the random variables min(Xn, a).

Exercise 3. [Hard] Give an example of an iid sequence (Xn)n→1 such that almost surely

lim sup
n↑↓

X1 + · · ·+Xn

n
= → and lim inf

n↑↓

X1 + · · ·+Xn

n
= ↑→.

Exercise 4. Let (Xn)n→1 be an iid sequence of random variables that are uniformly

distributed in unit ball {x ↔ R2 : ↗x↗2 ↘ 1}. Define (Zn)n→1 inductively by Z0 = (1, 0)
and Zn+1 = ↗Xn+1↗2 · Zn.

(i) Show that there exists c ↔ R such that

log ↗Zn↗2
n

a.s.↑↑↑↓
n↑↓

c.

(ii) Compute the value of c.
(iii) What is the limit when Z0 = (2, 2)?

Exercise 5. [R]

(i) Show that a family of random variables (Xi)i↔I defined on a probability space

(!,F ,P). Show this family is uniformly integrable if and only if it is bounded in

L1
(that is, there exists M ↔ R such that for all i ↔ I, E(|Xi|) ↘ M) and for all

ω > 0 there exists ε > 0 such that for all A ↔ F with P(A) ↘ ε and all i ↔ I we

have E(|Xi|1A) ↘ ω.
(ii) Let (Xi)i↔I and (Yj)j↔J be two uniformly integrable families of random variables.

Show that (Xi + Yj)(i,j)↔I↗J is uniformly integrable.

Submission of solutions. Hand in your solutions by 18:00, 11/10/2024 following the

instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/
Note that only the exercises marked with [R] will be corrected.
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Exercise 1. [R] Let (Xn)n→1, X be random variables such that Xn
P→↑ X as n ↑ ↓.

Show that the following are equivalent.

(1) (Xn)n→1 is uniformly integrable.

(2) (Xn), X are all in L1
and E[|Xn|] ↑ E[|X|] as n ↑ ↓.

Exercise 2. [R] Give an example of a sequence of random variables (Xn)n→1 that is not

uniformly integrable and a random variable X such that

Xn
P→↑ X and E(Xn) ↑ E(X),

as n ↑ ↓.

Exercise 3. Let (Xn)n→1 be a sequence of iid real-valued random variables. Show that if

E(|X1|) < ↓, then the sequence (max(X1, . . . , Xn)/n)n→2 is uniformly integrable. Is the

converse true?

Exercise 4. Consider the probability space defined by ! = {1, 2, 3, 4, 5, 6}, F = 2!, and

↔A ↗ F P(A) = |A|/6.
Define random variables X and Y by

X(ω) = ω (mod 2) and Y (ω) = ω (mod 3).

Is ε(X, Y ) = ε(X) ↘ ε(Y )?

Exercise 5. [R] Let p ↗ [0, 1]. Let (Xn)n→1, Y be independent random variables with

distributions specified as follows: (Xn)n→1 is an iid sequence of random variables with

P(X1 = 1) = 1→ P(X1 = →1) = p and P(Y = 1) = P(Y = →1) = 1/2. For n ≃ 1, define

Zn = Xn · Y . For which values of p ↗ [0, 1] is the tail sigma algebra of (Zn)n→1 trivial?

Submission of solutions. Hand in your solutions by 18:00, 18/10/2024 following the

instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/
Note that only the exercises marked with [R] will be corrected.
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Exercise 1. Let ω, ε > 0 be real numbers. Let X → Poi(ω) and Y → Poi(ε) be

independent random variables. Show that X + Y → Poi(ω + ε).

Exericse 2. [R] This exercise shows that the tail of a random variable is determined by

the behaviour of its characteristic function around zero. Let X be a real-valued random

variable and let ϑ be its characterisitic function. Show that

P(|X| > 2/u) ↑ 1

u

∫ u

→u

(
1↓ ϑ(t)

)
dt.

Exercise 3. [R] Let X be a real-valued random variable such that its characteristic

function ϑX ↔ L1(R).
(i) Show that for all

↗ϖ ↔ C↑
c E

(
ϖ(X)

)
=

∫

R
ϖ(x)

∫

R
ϑ(t)e→itx dt dx.

(ii) Deduce that X has a density.

Exercise 4. Let X0, X1, . . . be iid random variables with

P(X0 = 1) = P(X0 = ↓1) = 1/2.

For n ↘ 1 define

Yn = X0 · · ·Xn.

Let

X = ϱ(X1, X2, . . .) and Yn = ϱ(Yn, Yn+1, . . .).

The aim of this exercise is to show that

⋂

n↓1

ϱ(X , Yn) and ϱ

(
X ,

⋂

n↓1

Yn

)

are not equal.

(i) Show that ϱ(X0) ≃ ϱ(X , Yn) for each n ↘ 1.
(ii) Show that

⋂
n↓1 Yn is trivial.

(iii) Show that ϱ(X0) is independent of ϱ
(
X ,

⋂
n↓1 Yn

)
. (Hint: check independence on a

suitable ς-system.)

(iv) Conclude.

Submission of solutions. Hand in your solutions by 18:00, 25/10/2024 following the

instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/
Note that only the exercises marked with [R] will be corrected.
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Exercise 1. Let (Xn)n→1 be iid random variables in L2
such that X1 has the same law

as →X1, P(X1 = 0) > 0, and X1 ↑ Z a.s. For n ↓ 1, define

Sn = X1 + · · ·+Xn.

Show that there exists c > 0 such that

P(Sn = 0) ↔
n↑↓

c↗
n
.

(For two sequences (an) and (bn) of real numbers, we write an ↔
n↑↓

bn if an/bn ↘ 1 as

n ↘ ≃.)

Exercise 2. Let (Xn)n→1 be a an iid sequence of random variables with

P(X1 = 1) = P(X1 = →1) = 1/2.

(i) Show that there exists a constant c > 0 such that for all n ↓ 1 and positive real

numbers a1, . . . , an > 0 we have

P(a1X1 + · · ·+ anXn = 0) ⇐ c↗
n
.

(ii) Show that there exists a constant c > 0 such that for all n ↓ 1 we have

P(X1 + 2X2 + · · ·+ nXn = 0) ⇐ c

n3/2
.

Exercise 3 (The moment problem). [R]

In this exercise, we only consider random variables that are in Lp
for all p ↓ 1. We say

that X is determined by its moments if for all random variables Y such that

⇒n ↓ 1 E(Xn) = E(Y n), (1)

we have µX = µY .

(i) We first give an example of a random variable that is not determined by its moments.

Let

X ↔ eZ where Z ↔ N (0, 1).

Let Y be a random variable taking values in {ek : k ↑ Z} defined as follows:

⇒k ↑ Z P(Y = ek) =
e↔k2/2

!
where ! =

∑

k↗Z

e↔k2/2.

Show that

⇒n ↓ 1 E(Xn) = E(Y n) = en
2/2.

(ii) Let X be a random variable such that there exists t > 0 such that E
(
et|X|) < ≃.

We show that then X is determined by its moments. First, check that X ↑ Lp
for

all p ↓ 1 and ωX , the characteristic function of X, is infinitely di!erentiable on R.

1



(iii) Fix a ↑ R. Show that

⇒ε ↑ (→t, t) ωX(a+ ε) =
↓∑

k=0

ek

k!
ω(k)
X (a).

(iv) Let ωY be the characteristic function of Y . Show that

⇒ε ↑ (→t, t) ωX(ε) = ωY (ε).

(v) Show that ωX(ε) = ωY (ε) for all ε ↑ R. Conclude that µX = µY .

Submission of solutions. Hand in your solutions by 18:00, 2/11/2024 following the

instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/
Note that only the exercises marked with [R] will be corrected.
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Exercise 1. Let (E, d) and (E →, d→) be metric spaces and let f : E → E →
be a continuous

function. Let (Xn)n↑1, X be random variables taking values in E such that

Xn
(d)↑→ X.

Show that

f(Xn)
(d)↑→ f(X).

Exercise 2. [R] Let p ↓ (0, 1) and let (Xn)n↑1 be a sequence of random variables where

Xn ↔ Geo(p/n). Show that Xn/n converges in distribution to a random variable Y . What

is the distribution of Y ?

Exercise 3. [R] Let (Xn)n↑1 be a sequence of real-valued random variables where Xn

has density pn (with respect to Lebesgue measure Leb). Suppose there is a measurable

function such that for Leb-almost all x ↓ R we have

pn(x) → p(x) as n → ↗.

(i) Is p always the density of some random variable? Justify your answer.

(ii) Assume that there is an integrable measurable function (with respect to Leb)

q : R → R↑0

such that for all n ↘ 1 and Leb-almost all x we have

pn(x) ≃ q(x).

Then show that p is the density of some random variable X and that Xn converges

in distribution to X.

Exercise 4. Let (Xn)n↑1 be a sequence of real-valued random variables converging in

distribution to a uniformly distributed random variable in [0, 1]. Let (Yn)n↑1 be a sequence

of real-valued random variables converging in probability to 0. Show that

P(Xn < Yn) → 0 as n → ↗.

Submission of solutions. Hand in your solutions by 18:00, 8/11/2024 following the

instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/
Note that only the exercises marked with [R] will be corrected.
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Exercise 1. [R] Let (Xn)n→1 be an iid sequence of N (0, 1) random variables. For n → 1,
define

Yn =
1

n

n∑

k=1

↑
kXk.

Does Yn converge in distribution? What is the limit?

Exercise 2. [R] Let (Xn)n→1 be a sequence of iif U [0, 1] random variables.

(i) Show that nmin(X1, . . . , Xn) converges in distribution to a random variable Y .

What is the distribution of Y ?

(ii) Show that

(X1 + · · ·+Xn)min(X1, . . . , Xn)
(d)↓↔ Y/2.

Exercise 3 (Normality of the t-statistic). [R] Let (Xn)n→1 be iid real-valued random

variables in L2
. Let m = E(X1) and ω2 = Var(X1. For n → 1, define

X̄n =
X1 + ·+Xn

n
and S2

n =
1

n↓ 1

n∑

k=1

(Xk ↓ X̄n)
2.

The aim of this exercise is to show that

X1 + · · ·+Xn ↓ nm√
nS2

n

(d)↓↓↔ Z, where Z ↗ N (0, 1). (1)

(i) Show that S2
n ↔ ω2

a.s.

(ii) Show that
X1+···+Xn↑

nω2

(d)↓↔ Z, where Z ↗ N (0, 1).

(iii) Prove (1).

Exercise 4 (Skorokhod representation on the reals). Let (Xn)n→1, X be real-valued

random variables such that Xn
(d)↓↔ X. The aim of this is to construct a probability space

carrying these random variables such that Xn
a.s.↓↓↔ X. For a distribution function F , we

define

F↓1 : (0, 1) ↔ R, by F↓1(t) = inf{s : F (s) > t}.
Let (Fn) and F be the distribution functions of (Xn) and (X), and let U ↗ U(0, 1).

(i) Show that F↓1
n (U) has the same distribution as Xn for all n → 1 and that F↓1(U)

has the same distribution as X.

(ii) Show that

F↓1
n (U)

a.s.↓↓↔ F↓1(U) as n ↔ ↘.

Submission of solutions. Hand in your solutions by 18:00, 16/11/2024 following the

instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/
Note that only the exercises marked with [R] will be corrected.
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Exercise 1. [R] Let (!,F ,P) be a probability space and let A = {!1,!2, . . . ,!n} be

a partition of !. Let X be a real-valued ω(A)-measurable random variable. Show that

there exist real numbers ε1, . . . ,εn such that

X =
n∑

i=1

εi1!i .

Exercise 2. [R] Fix n → 1. Let X ↑ Unif[0, 1] and let Y = ↓n ·X↔. Compute E(X|Y ).

Exercise 3. Fix n → 2. Let X, Y be two numbers chosen uniformly at random from

{1, 2, . . . , n} without replacement. Define the event A = {Y > X}.
(i) Compute E(Y |A).
(ii) Compute E

(
max(X, Y )|min(X, Y )

)
.

Exercise 4. Let X, Y be real-valued random variables taking finitely many values. Define

the random variable

Var(X|Y ) = E(X2|Y )↗ E(X|Y )2.

Show that

Var(X) = E
(
Var(X|Y )

)
+Var

(
E(X|Y )

)
.

Exercise 5. Let (Xn)n→1, (Yn)n→1, X, Y be random variables. Assume that for all n → 1,
Xn and Yn are independent, and that X and Y are independent. Suppose

Xn
(d)↗↘ X and Yn

(d)↗↘ Y.

Then show that

(Xn, Yn)
(d)↗↘ (X, Y ).

Submission of solutions. Hand in your solutions by 18:00, 22/11/2024 following the

instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/
Note that only the exercises marked with [R] will be corrected.
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Exercise 1. [R] Let A be an compact set in R2
and let (X, Y ) → Unif(A). Compute

E
(
X2|Y

)

in the following cases:

(1) A = [↑1, 1]2,
(2) A = {(x, y) : |x|+ |y| ↓ 1}.

Exercise 2. Let X, Y be independent random variables and let ω : R2 ↔ R→0 be a

measurable function such that

E
(
|ω(X, Y )|

)
< ↗.

Define ε : R ↔ [0,↗] by

ε(y) = E
(
ω(X, y)

)
.

Show that

E(ω(X, Y )|Y ) = ε(Y ) a.s.

Exercise 3. [R] Let (Yn)n→1 be iid random variables which are uniform in {↑1,+1} and

let X be a random variable in L2
. Let [n] denote {1, . . . , n} and for a subset S ↘ [n],

define

YS =
∏

i↑S

Yi,

where Y↓ defined to be 1.

(1) Show that E(X|Y1) = E(X) + E(XY1)Y1.

(2) More generally, for all n ≃ 1 show that

E(X|Y1, . . . , Yn) =
∑

S↔[n]

E(XYS)YS.

Exercise 4. [R] Let X be a real-valued random variable defined on (!,F ,P) that takes

values in [0,↗] a.s. Let G ↘ F be a sigma-algebra. Define E(X|G) and show that it is

unique (up to almost sure equivalence).

Submission of solutions. Hand in your solutions by 18:00, 29/11/2024 following the

instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/
Note that only the exercises marked with [R] will be corrected.
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Exercise 1. [R] Let (Xn)n→1 be iid random variables in L1
and for n → 1, let

Sn = X1 + · · ·+Xn.

Compute E(Sn|X1) and E(X1|Sn).

Exercise 2. [R] Let (!,F ,P) be a probability space. Let G,H ↑ F be sigma-algebras

and let X be a random variable. Show that we need not have that

E(E(X|G)|H) = E(X|G ↓H).

Exercise 3. [R] Let (Xn)n→1 be iid random variables taking values in {+1. ↔ 1} with

P(X1 = 1) = 1/2. Let S0 = 0 and for n → 1, let Sn = X1 + · · · + Xn. Let F0 = {↗,!}
and for n → 1, let Fn = ω(X1, . . . , Xn). Show that

Mn = S2
n ↔ n

is a (Fn)-martingale.

Exercise 4. Fix p ↘ (0, 1). Let (Xn)n→1 be iid random variables taking values in {+1,↔1}
with P(X1 = 1) = p. Let S0 = 0 and for n → 1 let Sn = X1 + · · · +Xn. Let F0 = {↗,!}
and for n → 1, let Fn = ω(X1, . . . , Xn). Show that

Mn =

(
1

p
↔ 1

)Sn

is a (Fn)-martingale.

Exercise 5 (Azuma’s inequality). [R] Let (Xn)n→0 be martingale with respect to its

canonical filtration (Fn)→0. Assume X0 = 0 and that |Xn ↔Xn↑1| ≃ 1 for all n → 1. Fix

m → 1. The aim of this exercise is to show that ε > 0 we have

P(Xm > ε
⇐
m) ≃ e↑ω2/2. (1)

(1) Let ϑ > 0. Show that for all x ↘ [↔1, 1] we have eεx ≃
eω+e→ω

2 + eω↑e→ω

2 x
(2) Set Yi = Xi ↔Xi↑1. Show that for all i → 1 we have

E(eεYi |Fi↑1) ≃ cosh(ϑ) ≃ eε
2/2.

(3) Deduce that E(eεXm) ≃ eε
2m/2.

(4) Use ϑ = ε/
⇐
m and Markov’s inequality to prove (1).

Submission of solutions. Hand in your solutions by 18:00, 06/12/2024 following the

instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/
Note that only the exercises marked with [R] will be corrected.
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Exercise 1. [R]

(1) Let (Xn)n→1 be an iid sequence of random variables uniform in {→1, 1}. Show that

Sn =
n∑

m=1

Xm

m3/4

converges almost surely as n ↑ ↓.

(2) Find an example of a martingale that converges almost surely but is not bounded in

L1
.

(3) Find an example of a martingale that converges almost surely to ↓.

Exercise 2. Let (Yn)n→0 be a sequence of non-negative iid random variables with E(Y1) =
1 and P(Y1 = 1) < 1 and let (Fn)n→0 be the canonical filtration.

(1) Show that Xn =
∏n

k=0 Yk defines a martingale with respect to (Fn).
(2) Show that Xn ↑ 0 as n ↑ ↓ a.s.

Exercise 3. Fix p ↔ (0, 1/2). Let (Xn)n→1 be iid random variables taking values in

{→1, 1} with P(X1 = 1) = p. For n ↗ 1 let Sn = X1 + · · ·+Xn and let

Mn =

(
1

p
→ 1

)Sn

.

Show that Mn converges almost surely to 0 but E(Mn) does not converge to 0 as n ↑ ↓.

Exercise 4 (Positive harmonic functions on the square lattice). Let

h : Z2 ↑ R>0

be a harmonic function, meaning that

↘(x, y) ↔ Z2 h(x, y) =
1

4

(
h(x+ 1, y) + h(x→ 1, y) + h(x, y + 1) + h(x, y → 1)

)
.

The aim of this exercise is to show that h must be constant. Let (Xn)n→1 be iid uniform

in {(1, 0), (→1, 0), (0, 1), (0,→1)}. Define the sequence (Zn)n→0 by Z0 = (0, 0) and

Zn =
n∑

k=1

Xk

for n ↗ 1. Let (Fn) be the filtration generated by (Zn).

(1) Show that
(
h(Zn)

)
n→0

is a Fn-martingale that converges almost surely.

(2) You may use the fact that

↘(x, y) ↔ Z2 |{n : Zn = (x, y)}| = ↓ a.s.

Conclude that h is consant.

(3) Instead of assuming h takes positive values, assume that |h| is bounded. Then

show that h is constant.
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Exercise 5 (Pólya’s Urn). At time 0, an urn contains 1 black ball and 1 white ball. At

each time n ↗ 1 a ball is chosen at random from the urn and is replaced together with a

new ball of the same colour. Just after time n, there are therefore n+ 2 balls in the urn,

of which Bn + 1 are black, where Bn is the number of black balls chosen by time n. We

let Fn = ω(B1, . . . , Bn).

(1) Prove that Bn is uniformly distributed on {0, 1, . . . , n}.
(2) Let Mn = (Bn + 1)/(n + 2) be the proportion of black balls in the urn just after

time n. Prove that (Mn) is a martingale with respect to (Fn) and show that

Mn ↑ U as n ↑ ↓ a.s. for some random variable U .

(3) Show that U is uniformly distributed on (0, 1).

Submission of solutions. Hand in your solutions by 18:00, 13/12/2024 following the

instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/
Note that only the exercises marked with [R] will be corrected.
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Prof. Vincent Tassion HS 2024

PROBABILITY THEORY (D-MATH)
EXERCISE SHEET 13

Exercise 1. Let (Fn)n→0 be a filtration and let S, T be two stopping times with respect

to (Fn)n→0. Let S, T : ! → N ↑ {↓} be (Fn) stopping times. Prove or disprove with a

counter-example the following statements:

(1) S ↔ T is a stopping time.

(2) S ↗ T is a stopping time.

(3) S + T is a stopping time.

(4) S + 1 is a stopping time.

(5) S ↘ 1 is a stopping time.

Exercise 2. [R] Let (Xn)n→1 be iid random variables uniform in {↘1, 1}. Let S0 = 0
and for n ≃ 1 let Sn = X1 + · · · + Xn. Fix integers a < 0 < b. For an integer k, define

Tk = min{n ≃ 0 : Sn = a}. Define

Ta,b = Ta ↗ Tb.

(1) Show that Ta,b is a stopping time that is finite almost surely.

(2) Compute P(Ta < Tb).
(3) Compute E(Ta,b).

Exercise 3. [R] Let (Mn)n→0 be a (Fn)n→0 martingale and let T be a (Fn)n→0 stopping

time.

(1) Assume that E(T ) < ↓ and there there exists K > 0 such that a.s. we have

E(|Mn+1 ↘Mn|) | Fn ⇐ K

for every n ≃ 0. Show that E(MT ) = E(M0).
Hint. Justify that |MT↑n| ⇐ |M0| +

∑↓
i=0 |Mi+1 ↘ Mi|1T>i and use dominated

convergence.

(2) Let (Xn)n→1 be iid L1
real-valued random variables. Set S0 = 0, Sn = X1 + · · ·+Xn

for n ≃ 1 and Fn = ω(Si : 0 ⇐ i ⇐ n) for n ≃ 0. Finally, let T be a (Fn)-stopping

time with E(T ) < ↓. Show that

E(ST ) = E(X1)E(T ).

Exercise 4. Let (Mn)n→0 be a uniformly integrable martingale with respect to a filtration

(Fn)n→0.

(1) Is it true that the collection {MT : T stopping time with respect to (Fn)n→0} is

uniformly integrable?

(2) Let T be a stopping time. Is it true that (Mn↑T )n→0 is a uniformly integrable

martingale? Justify your answer.

Submission of solutions. Hand in your solutions by 18:00, 20/12/2024 following the

instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/
Note that only the exercises marked with [R] will be corrected.
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