Exercise 1. This exercise shows that a simple random walk on \mathbb{Z} cannot be confined to a strip forever. Let $(X_n)_{n\geq 1}$ be an iid sequence of random variables defined by

$$P(X_1 = 1) = P(X_1 = -1) = 1/2.$$

For $n \ge 1$, define $S_n = X_1 + \dots + X_n$. Let $k \ge 1$ be a fixed integer. Show that $P(\forall n \ge 1 \ 0 \le S_n \le k) = 0.$

Exercise 2 [R]. Let $(X_n)_{n\geq 1}$ be an iid sequence of random variables uniformly distributed in $\{-1, 1, 2, -2\}$. For $n \geq 1$, let $S_n = X_1 + \cdots + X_n$. Fix $n \geq 1$.

- (i) Compute $E(S_n)$ and $Var(S_n)$.
- (ii) Prove that

$$\mathbf{P}(|S_n| \ge 2\sqrt{n}) \le \frac{3}{4}.$$

(iii) Prove that

$$\forall k \in \mathbb{Z} \quad \mathcal{P}(S_n = k) = \mathcal{P}(S_n = -k).$$

(iv) Prove hat

$$\forall k \in \mathbb{Z} \quad \mathcal{P}(X_1 + \dots + X_n = k) = \mathcal{P}(X_{n+1} + \dots + X_{2n} = k).$$

(v) Deduce that

$$\forall k \in \mathbb{Z} \quad \mathcal{P}(S_{2n} = k) = \sum_{i \in \mathbb{Z}} \mathcal{P}(S_n = i) \cdot \mathcal{P}(S_n = k - i).$$

(vi) Apply the Cauchy-Schwarz inequality to show that

$$\forall k \in \mathbb{Z} \quad \mathcal{P}(S_{2n} = k) \le \mathcal{P}(S_{2n} = 0).$$

(vii) Deduce that

$$\mathcal{P}(S_{2n}=0) \ge \frac{1}{50\sqrt{n}}$$

Exercise 3. Let $(X_n)_{n\geq 1}$ be iid Exp(1) random variables. Show that

$$\limsup_{n \to \infty} \frac{X_n}{\log n} = 1 \quad a.s.$$

Exercise 4. Let $(A_n)_{n\geq 1}$ be a sequence of events such that

$$\lim_{n \to \infty} \mathcal{P}(A_n) = 0 \text{ and } \sum_{n \ge 1} \mathcal{P}(A_n \setminus A_{n+1}) < \infty.$$

Prove that $P(infinitely many A_n occur) = 0.$

Submission of solutions. Hand in your solutions by 18:00, 27/09/2024 following the instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/

HS 2024

PROBABILITY THEORY (D-MATH) EXERCISE SHEET 2

Exercise 1. Give an example of a subsequence $(n(k))_{k\geq 1}$ such that

$$X_{n(k)} \xrightarrow{a.s.} 0$$

where

- (i) $(X_n)_{n\geq 1}$ is iid with $X_1 \sim \text{Ber}(1/n)$.
- (ii) $(X_n)_{n\geq 1}$ is the typesetter sequence.

Exercise 2 [R]. Let (E, d) and (E', d') be metric spaces. Let $(X_n)_{n\geq 1}$ and X be random variables taking values in E.

- (i) (Subsubsequence lemma) Show that X_n converges to X in probability if and only if for every subsequence $(n(k))_{k\geq 1}$ there exists a subsubsequence $(n(k(l))_{l\geq 1}$ such that $X_{n(k(l))}$ converges to X almost surely as $l \to \infty$.
- (ii) (Continuous mapping) Let $f: E \to E'$ be a continuous function. First, suppose $X_n \to X$ a.s. and show that $f(X_n) \to f(X)$ a.s. Next, suppose $X_n \to X$ in probability and show that $f(X_n) \to f(X)$ in probability.

Exercise 3 [R]. Let $(Y_n)_{n\geq 1}$ be a sequence of independent random variables such that $Y_n \sim \operatorname{Exp}(\lambda_n)$, where $(\lambda_n)_{n\geq 1}$ is a sequence of positive real numbers such that $\lambda_n \to \infty$ as $n \to \infty$.

- (i) Show that $Y_n \to 0$ in probability.
- (ii) Let $\lambda_n = 10 \log n$. Does Y_n converge to 0 almost surely?
- (iii) Let $\lambda_n = (\log n)^2$. Does Y_n converge to 0 almost surely?

Exercise 4. Define the space of functions

 $L^0 = \{ X : \Omega \to E \text{ measurable} \} / \sim,$

where the equivalence relation \sim is defined by

$$X \sim Y \iff X = Y \ a.s.$$

- (i) Show that $D(X,Y) = E(1 \wedge d(X,Y))$ defines a metric on L^0 .
- (ii) Assume E is complete. Show that (L^0, D) is complete.

Exercise 5. Let $(X_n)_{n\geq 1}$ be an iid sequence of random variables with $E(|X_1|) < \infty$. Define

$$S_n = \sum_{i=1}^n X_i X_{i+1}.$$

Show that S_n/n converges almost surely.

Submission of solutions. Hand in your solutions by 18:00, 04/10/2024 following the instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/

Exercise 1. Let $(u_n)_{n\geq 1}$ and c be real numbers. Suppose $\lim_{n\to\infty} u_n = c$. Show that

$$\lim_{n \to \infty} \frac{u_1 + \dots + u_n}{n} = c$$

Exercise 2. [R] Let $(X_n)_{n\geq 1}$ be pairwise independent, positive, identically distributed random variables with $E(X_1) = \infty$. Show that

$$\frac{X_1 + \dots + X_n}{n} \xrightarrow[n \to \infty]{a.s.} \infty.$$

Hint: for a > 0 consider the random variables $\min(X_n, a)$.

Exercise 3. [Hard] Give an example of an iid sequence $(X_n)_{n\geq 1}$ such that almost surely

$$\limsup_{n \to \infty} \frac{X_1 + \dots + X_n}{n} = \infty \quad \text{and} \quad \liminf_{n \to \infty} \frac{X_1 + \dots + X_n}{n} = -\infty$$

Exercise 4. Let $(X_n)_{n\geq 1}$ be an iid sequence of random variables that are uniformly distributed in unit ball $\{x \in \mathbb{R}^2 : \|x\|_2 \leq 1\}$. Define $(Z_n)_{n\geq 1}$ inductively by $Z_0 = (1,0)$ and $Z_{n+1} = \|X_{n+1}\|_2 \cdot Z_n$.

(i) Show that there exists $c \in \mathbb{R}$ such that

$$\frac{\log \|Z_n\|_2}{n} \xrightarrow[n \to \infty]{a.s.} c.$$

- (ii) Compute the value of c.
- (iii) What is the limit when $Z_0 = (2, 2)$?

Exercise 5. [R]

- (i) Show that a family of random variables $(X_i)_{i \in I}$ defined on a probability space (Ω, \mathcal{F}, P) . Show this family is uniformly integrable if and only if it is bounded in L^1 (that is, there exists $M \in \mathbb{R}$ such that for all $i \in I$, $E(|X_i|) \leq M$) and for all $\epsilon > 0$ there exists $\delta > 0$ such that for all $A \in \mathcal{F}$ with $P(A) \leq \delta$ and all $i \in I$ we have $E(|X_i|1_A) \leq \epsilon$.
- (ii) Let $(X_i)_{i \in I}$ and $(Y_j)_{j \in J}$ be two uniformly integrable families of random variables. Show that $(X_i + Y_j)_{(i,j) \in I \times J}$ is uniformly integrable.

Submission of solutions. Hand in your solutions by 18:00, 11/10/2024 following the instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/

Exercise 1. [R] Let $(X_n)_{n\geq 1}, X$ be random variables such that $X_n \xrightarrow{P} X$ as $n \to \infty$. Show that the following are equivalent.

- (1) $(X_n)_{n\geq 1}$ is uniformly integrable. (2) $(X_n), X$ are all in L^1 and $E[|X_n|] \to E[|X|]$ as $n \to \infty$.

Exercise 2. [R] Give an example of a sequence of random variables $(X_n)_{n\geq 1}$ that is not uniformly integrable and a random variable X such that

$$X_n \xrightarrow{\mathrm{P}} X$$
 and $\mathrm{E}(X_n) \to \mathrm{E}(X)$,

as $n \to \infty$.

Exercise 3. Let $(X_n)_{n>1}$ be a sequence of iid real-valued random variables. Show that if $E(|X1|) < \infty$, then the sequence $(\max(X_1, \ldots, X_n)/n)_{n\geq 2}$ is uniformly integrable. Is the converse true?

Exercise 4. Consider the probability space defined by $\Omega = \{1, 2, 3, 4, 5, 6\}, \mathcal{F} = 2^{\Omega}$, and

$$\forall A \in \mathcal{F} \quad \mathcal{P}(A) = |A|/6.$$

Define random variables X and Y by

$$X(\omega) = \omega \pmod{2}$$
 and $Y(\omega) = \omega \pmod{3}$.

Is $\sigma(X, Y) = \sigma(X) \cup \sigma(Y)$?

Exercise 5. [R] Let $p \in [0,1]$. Let $(X_n)_{n\geq 1}, Y$ be independent random variables with distributions specified as follows: $(X_n)_{n\geq 1}$ is an iid sequence of random variables with $P(X_1 = 1) = 1 - P(X_1 = -1) = p$ and P(Y = 1) = P(Y = -1) = 1/2. For $n \ge 1$, define $Z_n = X_n \cdot Y$. For which values of $p \in [0, 1]$ is the tail sigma algebra of $(Z_n)_{n \ge 1}$ trivial?

Submission of solutions. Hand in your solutions by 18:00, 18/10/2024 following the instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/

Exercise 1. Let $\alpha, \beta > 0$ be real numbers. Let $X \sim \text{Poi}(\alpha)$ and $Y \sim \text{Poi}(\beta)$ be independent random variables. Show that $X + Y \sim \text{Poi}(\alpha + \beta)$.

Exercise 2. [R] This exercise shows that the tail of a random variable is determined by the behaviour of its characteristic function around zero. Let X be a real-valued random variable and let ϕ be its characteristic function. Show that

$$P(|X| > 2/u) \le \frac{1}{u} \int_{-u}^{u} (1 - \phi(t)) dt$$

Exercise 3. [R] Let X be a real-valued random variable such that its characteristic function $\phi_X \in L^1(\mathbb{R})$.

(i) Show that for all

$$\forall \psi \in \mathcal{C}_c^{\infty} \quad \mathrm{E}(\psi(X)) = \int_{\mathbb{R}} \psi(x) \int_{\mathbb{R}} \phi(t) e^{-itx} dt dx.$$

(ii) Deduce that X has a density.

Exercise 4. Let X_0, X_1, \ldots be iid random variables with

$$P(X_0 = 1) = P(X_0 = -1) = 1/2.$$

For $n \geq 1$ define

$$Y_n = X_0 \cdots X_n.$$

Let

$$\mathcal{X} = \sigma(X_1, X_2, \ldots)$$
 and $\mathcal{Y}_n = \sigma(Y_n, Y_{n+1}, \ldots).$

The aim of this exercise is to show that

$$\bigcap_{n\geq 1} \sigma(\mathcal{X},Y_n) \quad \text{and} \quad \sigma\bigg(\mathcal{X},\bigcap_{n\geq 1}\mathcal{Y}_n\bigg)$$

are not equal.

- (i) Show that $\sigma(X_0) \subset \sigma(\mathcal{X}, Y_n)$ for each $n \geq 1$.
- (ii) Show that $\bigcap_{n>1} \mathcal{Y}_n$ is trivial.
- (iii) Show that $\sigma(X_0)$ is independent of $\sigma(\mathcal{X}, \bigcap_{n\geq 1} \mathcal{Y}_n)$. (Hint: check independence on a suitable π -system.)
- (iv) Conclude.

Submission of solutions. Hand in your solutions by 18:00, 25/10/2024 following the instructions on the course website

Exercise 1. Let $(X_n)_{n\geq 1}$ be iid random variables in L^2 such that X_1 has the same law as $-X_1$, $P(X_1 = 0) > 0$, and $X_1 \in \mathbb{Z}$ a.s. For $n \geq 1$, define

$$S_n = X_1 + \dots + X_n.$$

Show that there exists c > 0 such that

$$\mathbf{P}(S_n = 0) \underset{n \to \infty}{\sim} \frac{c}{\sqrt{n}}.$$

(For two sequences (a_n) and (b_n) of real numbers, we write $a_n \underset{n \to \infty}{\sim} b_n$ if $a_n/b_n \to 1$ as $n \to \infty$.)

Exercise 2. Let $(X_n)_{n\geq 1}$ be a an iid sequence of random variables with

$$P(X_1 = 1) = P(X_1 = -1) = 1/2.$$

(i) Show that there exists a constant c > 0 such that for all $n \ge 1$ and positive real numbers $a_1, \ldots, a_n > 0$ we have

$$P(a_1X_1 + \dots + a_nX_n = 0) \le \frac{c}{\sqrt{n}}.$$

(ii) Show that there exists a constant c > 0 such that for all $n \ge 1$ we have

$$P(X_1 + 2X_2 + \dots + nX_n = 0) \le \frac{c}{n^{3/2}}.$$

Exercise 3 (The moment problem). [R]

In this exercise, we only consider random variables that are in L^p for all $p \ge 1$. We say that X is determined by its moments if for all random variables Y such that

$$\forall n \ge 1 \quad \mathcal{E}(X^n) = \mathcal{E}(Y^n), \tag{1}$$

we have $\mu_X = \mu_Y$.

(i) We first give an example of a random variable that is not determined by its moments. Let

$$X \sim e^Z$$
 where $Z \sim \mathcal{N}(0, 1)$.

Let Y be a random variable taking values in $\{e^k : k \in \mathbb{Z}\}$ defined as follows:

$$\forall k \in \mathbb{Z} \quad \mathcal{P}(Y = e^k) = \frac{e^{-k^2/2}}{\Lambda} \quad \text{where } \Lambda = \sum_{k \in \mathbb{Z}} e^{-k^2/2}.$$

Show that

$$\forall n \ge 1 \quad \mathcal{E}(X^n) = \mathcal{E}(Y^n) = e^{n^2/2}.$$

(ii) Let X be a random variable such that there exists t > 0 such that $E(e^{t|X|}) < \infty$. We show that then X is determined by its moments. First, check that $X \in L^p$ for all $p \ge 1$ and ϕ_X , the characteristic function of X, is infinitely differentiable on \mathbb{R} . (iii) Fix $a \in \mathbb{R}$. Show that

$$\forall \epsilon \in (-t,t) \quad \phi_X(a+\epsilon) = \sum_{k=0}^{\infty} \frac{e^k}{k!} \phi_X^{(k)}(a).$$

(iv) Let ϕ_Y be the characteristic function of Y. Show that

$$\forall \epsilon \in (-t, t) \quad \phi_X(\epsilon) = \phi_Y(\epsilon).$$

(v) Show that $\phi_X(\epsilon) = \phi_Y(\epsilon)$ for all $\epsilon \in \mathbb{R}$. Conclude that $\mu_X = \mu_Y$.

Submission of solutions. Hand in your solutions by 18:00, 2/11/2024 following the instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/

Exercise 1. Let (E, d) and (E', d') be metric spaces and let $f : E \to E'$ be a continuous function. Let $(X_n)_{n>1}, X$ be random variables taking values in E such that

$$X_n \xrightarrow{(d)} X$$

Show that

$$f(X_n) \xrightarrow{(d)} f(X).$$

Exercise 2. [R] Let $p \in (0, 1)$ and let $(X_n)_{n \ge 1}$ be a sequence of random variables where $X_n \sim \text{Geo}(p/n)$. Show that X_n/n converges in distribution to a random variable Y. What is the distribution of Y?

Exercise 3. [R] Let $(X_n)_{n\geq 1}$ be a sequence of real-valued random variables where X_n has density p_n (with respect to Lebesgue measure Leb). Suppose there is a measurable function such that for Leb-almost all $x \in \mathbb{R}$ we have

$$p_n(x) \to p(x)$$
 as $n \to \infty$.

- (i) Is p always the density of some random variable? Justify your answer.
- (ii) Assume that there is an integrable measurable function (with respect to Leb)

$$q: \mathbb{R} \to \mathbb{R}_{\geq 0}$$

such that for all $n \ge 1$ and Leb-almost all x we have

$$p_n(x) \le q(x).$$

Then show that p is the density of some random variable X and that X_n converges in distribution to X.

Exercise 4. Let $(X_n)_{n\geq 1}$ be a sequence of real-valued random variables converging in distribution to a uniformly distributed random variable in [0, 1]. Let $(Y_n)_{n\geq 1}$ be a sequence of real-valued random variables converging in probability to 0. Show that

$$P(X_n < Y_n) \to 0 \text{ as } n \to \infty.$$

Submission of solutions. Hand in your solutions by 18:00, 8/11/2024 following the instructions on the course website

Exercise 1. [R] Let $(X_n)_{n\geq 1}$ be an iid sequence of $\mathcal{N}(0,1)$ random variables. For $n\geq 1$, define

$$Y_n = \frac{1}{n} \sum_{k=1}^n \sqrt{k} X_k.$$

Does Y_n converge in distribution? What is the limit?

Exercise 2. [R] Let $(X_n)_{n\geq 1}$ be a sequence of if $\mathcal{U}[0,1]$ random variables.

- (i) Show that $n \min(X_1, \ldots, X_n)$ converges in distribution to a random variable Y. What is the distribution of Y?
- (ii) Show that

$$(X_1 + \dots + X_n) \min(X_1, \dots, X_n) \xrightarrow{(d)} Y/2.$$

Exercise 3 (Normality of the t-statistic). [R] Let $(X_n)_{n\geq 1}$ be iid real-valued random variables in L^2 . Let $m = E(X_1)$ and $\sigma^2 = Var(X_1)$. For $n \geq 1$, define

$$\bar{X}_n = \frac{X_1 + \dots + X_n}{n}$$
 and $S_n^2 = \frac{1}{n-1} \sum_{k=1}^n (X_k - \bar{X}_n)^2$.

The aim of this exercise is to show that

$$\frac{X_1 + \dots + X_n - nm}{\sqrt{nS_n^2}} \xrightarrow{(d)} Z, \text{ where } Z \sim \mathcal{N}(0, 1).$$
(1)

- (i) Show that $S_n^2 \to \sigma^2$ a.s.
- (ii) Show that $\frac{X_1 + \dots + X_n}{\sqrt{n\sigma^2}} \xrightarrow{(d)} Z$, where $Z \sim \mathcal{N}(0, 1)$.
- (iii) Prove (1).

Exercise 4 (Skorokhod representation on the reals). Let $(X_n)_{n\geq 1}$, X be real-valued random variables such that $X_n \xrightarrow{(d)} X$. The aim of this is to construct a probability space carrying these random variables such that $X_n \xrightarrow{a.s.} X$. For a distribution function F, we define

$$F^{-1}: (0,1) \to \mathbb{R}, \text{ by } F^{-1}(t) = \inf\{s: F(s) > t\}$$

Let (F_n) and F be the distribution functions of (X_n) and (X), and let $U \sim \mathcal{U}(0, 1)$.

- (i) Show that $F_n^{-1}(U)$ has the same distribution as X_n for all $n \ge 1$ and that $F^{-1}(U)$ has the same distribution as X.
- (ii) Show that

$$F_n^{-1}(U) \xrightarrow{a.s.} F^{-1}(U) \text{ as } n \to \infty.$$

Submission of solutions. Hand in your solutions by 18:00, 16/11/2024 following the instructions on the course website

```
https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/
```

Exercise 1. [R] Let (Ω, \mathcal{F}, P) be a probability space and let $\mathcal{A} = \{\Omega_1, \Omega_2, \ldots, \Omega_n\}$ be a partition of Ω . Let X be a real-valued $\sigma(\mathcal{A})$ -measurable random variable. Show that there exist real numbers $\lambda_1, \ldots, \lambda_n$ such that

$$X = \sum_{i=1}^{n} \lambda_i \mathbf{1}_{\Omega_i}$$

Exercise 2. [R] Fix $n \ge 1$. Let $X \sim \text{Unif}[0, 1]$ and let $Y = \lfloor n \cdot X \rfloor$. Compute E(X|Y).

Exercise 3. Fix $n \ge 2$. Let X, Y be two numbers chosen uniformly at random from $\{1, 2, ..., n\}$ without replacement. Define the event $A = \{Y > X\}$.

- (i) Compute E(Y|A).
- (ii) Compute $E(\max(X, Y) | \min(X, Y))$.

Exercise 4. Let X, Y be real-valued random variables taking finitely many values. Define the random variable

$$\operatorname{Var}(X|Y) = \operatorname{E}(X^2|Y) - \operatorname{E}(X|Y)^2.$$

Show that

$$\operatorname{Var}(X) = \operatorname{E}(\operatorname{Var}(X|Y)) + \operatorname{Var}(\operatorname{E}(X|Y))$$

Exercise 5. Let $(X_n)_{n\geq 1}, (Y_n)_{n\geq 1}, X, Y$ be random variables. Assume that for all $n \geq 1$, X_n and Y_n are independent, and that X and Y are independent. Suppose

$$X_n \xrightarrow{(d)} X$$
 and $Y_n \xrightarrow{(d)} Y_n$

Then show that

$$(X_n, Y_n) \xrightarrow{(d)} (X, Y).$$

Submission of solutions. Hand in your solutions by 18:00, 22/11/2024 following the instructions on the course website

Exercise 1. [R] Let A be an compact set in \mathbb{R}^2 and let $(X, Y) \sim \text{Unif}(A)$. Compute $\mathrm{E}(X^2|Y)$

in the following cases:

(1) $A = [-1, 1]^2$, (2) $A = \{(x, y) : |x| + |y| \le 1\}.$

Exercise 2. Let X, Y be independent random variables and let $\psi : \mathbb{R}^2 \to \mathbb{R}_{\geq 0}$ be a measurable function such that

$$\mathrm{E}(|\psi(X,Y)|) < \infty$$

Define $\phi : \mathbb{R} \to [0, \infty]$ by

$$\phi(y) = \mathcal{E}\big(\psi(X, y)\big).$$

Show that

$$E(\psi(X,Y)|Y) = \phi(Y) \ a.s$$

Exercise 3. [R] Let $(Y_n)_{n\geq 1}$ be iid random variables which are uniform in $\{-1, +1\}$ and let X be a random variable in L^2 . Let [n] denote $\{1, \ldots, n\}$ and for a subset $S \subset [n]$, define

$$Y_S = \prod_{i \in S} Y_i,$$

where Y_{\emptyset} defined to be 1.

(1) Show that $E(X|Y_1) = E(X) + E(XY_1)Y_1$.

(2) More generally, for all $n \ge 1$ show that

$$\mathbf{E}(X|Y_1,\ldots,Y_n) = \sum_{S \subset [n]} \mathbf{E}(XY_S)Y_S.$$

Exercise 4. [R] Let X be a real-valued random variable defined on (Ω, \mathcal{F}, P) that takes values in $[0, \infty]$ a.s. Let $\mathcal{G} \subset \mathcal{F}$ be a sigma-algebra. Define $E(X|\mathcal{G})$ and show that it is unique (up to almost sure equivalence).

Submission of solutions. Hand in your solutions by 18:00, 29/11/2024 following the instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/

Note that only the exercises marked with [R] will be corrected.

1

Exercise 1. [R] Let $(X_n)_{n>1}$ be iid random variables in L^1 and for $n \ge 1$, let

$$S_n = X_1 + \dots + X_n.$$

Compute $E(S_n|X_1)$ and $E(X_1|S_n)$.

Exercise 2. [R] Let (Ω, \mathcal{F}, P) be a probability space. Let $\mathcal{G}, \mathcal{H} \subset \mathcal{F}$ be sigma-algebras and let X be a random variable. Show that we need not have that

$$E(E(X|\mathcal{G})|\mathcal{H}) = E(X|\mathcal{G} \cap \mathcal{H}).$$

Exercise 3. [R] Let $(X_n)_{n\geq 1}$ be iid random variables taking values in $\{+1, -1\}$ with $P(X_1 = 1) = 1/2$. Let $S_0 = 0$ and for $n \geq 1$, let $S_n = X_1 + \cdots + X_n$. Let $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and for $n \geq 1$, let $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$. Show that

$$M_n = S_n^2 - n$$

is a (\mathcal{F}_n) -martingale.

Exercise 4. Fix $p \in (0, 1)$. Let $(X_n)_{n \ge 1}$ be iid random variables taking values in $\{+1, -1\}$ with $P(X_1 = 1) = p$. Let $S_0 = 0$ and for $n \ge 1$ let $S_n = X_1 + \cdots + X_n$. Let $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and for $n \ge 1$, let $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$. Show that

$$M_n = \left(\frac{1}{p} - 1\right)^{S_n}$$

is a (\mathcal{F}_n) -martingale.

Exercise 5 (Azuma's inequality). [R] Let $(X_n)_{n\geq 0}$ be martingale with respect to its canonical filtration $(\mathcal{F}_n)_{\geq 0}$. Assume $X_0 = 0$ and that $|X_n - X_{n-1}| \leq 1$ for all $n \geq 1$. Fix $m \geq 1$. The aim of this exercise is to show that $\lambda > 0$ we have

$$P(X_m > \lambda \sqrt{m}) \le e^{-\lambda^2/2}.$$
(1)

(1) Let $\alpha > 0$. Show that for all $x \in [-1, 1]$ we have $e^{\alpha x} \leq \frac{e^{\alpha} + e^{-\alpha}}{2} + \frac{e^{\alpha} - e^{-\alpha}}{2}x$

(2) Set $Y_i = X_i - X_{i-1}$. Show that for all $i \ge 1$ we have

$$\operatorname{E}(e^{\alpha Y_i}|\mathcal{F}_{i-1}) \le \cosh(\alpha) \le e^{\alpha^2/2}.$$

- (3) Deduce that $E(e^{\alpha X_m}) \leq e^{\alpha^2 m/2}$.
- (4) Use $\alpha = \lambda / \sqrt{m}$ and Markov's inequality to prove (1).

Submission of solutions. Hand in your solutions by 18:00, 06/12/2024 following the instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/

Exercise 1. [R]

(1) Let $(X_n)_{n\geq 1}$ be an iid sequence of random variables uniform in $\{-1,1\}$. Show that

$$S_n = \sum_{m=1}^n \frac{X_m}{m^{3/4}}$$

converges almost surely as $n \to \infty$.

- (2) Find an example of a martingale that converges almost surely but is not bounded in L^1 .
- (3) Find an example of a martingale that converges almost surely to ∞ .

Exercise 2. Let $(Y_n)_{n\geq 0}$ be a sequence of non-negative iid random variables with $E(Y_1) = 1$ and $P(Y_1 = 1) < 1$ and let $(\mathcal{F}_n)_{n\geq 0}$ be the canonical filtration.

- (1) Show that $X_n = \prod_{k=0}^n Y_k$ defines a martingale with respect to (\mathcal{F}_n) .
- (2) Show that $X_n \to 0$ as $n \to \infty$ a.s.

Exercise 3. Fix $p \in (0, 1/2)$. Let $(X_n)_{n\geq 1}$ be iid random variables taking values in $\{-1, 1\}$ with $P(X_1 = 1) = p$. For $n \geq 1$ let $S_n = X_1 + \cdots + X_n$ and let

$$M_n = \left(\frac{1}{p} - 1\right)^{S_n}.$$

Show that M_n converges almost surely to 0 but $E(M_n)$ does not converge to 0 as $n \to \infty$.

Exercise 4 (Positive harmonic functions on the square lattice). Let

$$h:\mathbb{Z}^2\to\mathbb{R}_{>0}$$

be a harmonic function, meaning that

$$\forall (x,y) \in \mathbb{Z}^2 \quad h(x,y) = \frac{1}{4} \big(h(x+1,y) + h(x-1,y) + h(x,y+1) + h(x,y-1) \big).$$

The aim of this exercise is to show that h must be constant. Let $(X_n)_{n\geq 1}$ be iid uniform in $\{(1,0), (-1,0), (0,1), (0,-1)\}$. Define the sequence $(Z_n)_{n\geq 0}$ by $Z_0 = (0,0)$ and

$$Z_n = \sum_{k=1}^n X_k$$

for $n \geq 1$. Let (\mathcal{F}_n) be the filtration generated by (Z_n) .

- (1) Show that $(h(Z_n))_{n>0}$ is a \mathcal{F}_n -martingale that converges almost surely.
- (2) You may use the fact that

$$\forall (x,y) \in \mathbb{Z}^2 \quad |\{n: Z_n = (x,y)\}| = \infty \quad a.s.$$

Conclude that h is consant.

(3) Instead of assuming h takes positive values, assume that |h| is bounded. Then show that h is constant.

Exercise 5 (Pólya's Urn). At time 0, an urn contains 1 black ball and 1 white ball. At each time $n \ge 1$ a ball is chosen at random from the urn and is replaced together with a new ball of the same colour. Just after time n, there are therefore n + 2 balls in the urn, of which $B_n + 1$ are black, where B_n is the number of black balls chosen by time n. We let $\mathcal{F}_n = \sigma(B_1, \ldots, B_n)$.

- (1) Prove that B_n is uniformly distributed on $\{0, 1, \ldots, n\}$.
- (2) Let $M_n = (B_n + 1)/(n + 2)$ be the proportion of black balls in the urn just after time n. Prove that (M_n) is a martingale with respect to (\mathcal{F}_n) and show that $M_n \to U$ as $n \to \infty$ a.s. for some random variable U.
- (3) Show that U is uniformly distributed on (0, 1).

Submission of solutions. Hand in your solutions by 18:00, 13/12/2024 following the instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/

Exercise 1. Let $(\mathcal{F}_n)_{n\geq 0}$ be a filtration and let S, T be two stopping times with respect to $(\mathcal{F}_n)_{n\geq 0}$. Let $S, T : \Omega \to \mathbb{N} \cup \{\infty\}$ be (\mathcal{F}_n) stopping times. Prove or disprove with a counter-example the following statements:

- (1) $S \vee T$ is a stopping time.
- (2) $S \wedge T$ is a stopping time.
- (3) S + T is a stopping time.
- (4) S + 1 is a stopping time.
- (5) S-1 is a stopping time.

Exercise 2. [R] Let $(X_n)_{n\geq 1}$ be iid random variables uniform in $\{-1,1\}$. Let $S_0 = 0$ and for $n \geq 1$ let $S_n = X_1 + \cdots + X_n$. Fix integers a < 0 < b. For an integer k, define $T_k = \min\{n \geq 0 : S_n = a\}$. Define

$$T_{a,b} = T_a \wedge T_b.$$

- (1) Show that $T_{a,b}$ is a stopping time that is finite almost surely.
- (2) Compute $P(T_a < T_b)$.
- (3) Compute $E(T_{a,b})$.

Exercise 3. [R] Let $(M_n)_{n\geq 0}$ be a $(\mathcal{F}_n)_{n\geq 0}$ martingale and let T be a $(\mathcal{F}_n)_{n\geq 0}$ stopping time.

(1) Assume that $E(T) < \infty$ and there there exists K > 0 such that a.s. we have

$$\mathbb{E}(|M_{n+1} - M_n|) \mid \mathcal{F}_n \le K$$

for every $n \ge 0$. Show that $E(M_T) = E(M_0)$. Hint. Justify that $|M_{T \wedge n}| \le |M_0| + \sum_{i=0}^{\infty} |M_{i+1} - M_i| \mathbf{1}_{T>i}$ and use dominated convergence.

(2) Let $(X_n)_{n\geq 1}$ be iid L^1 real-valued random variables. Set $S_0 = 0$, $S_n = X_1 + \cdots + X_n$ for $n \geq 1$ and $\mathcal{F}_n = \sigma(S_i : 0 \leq i \leq n)$ for $n \geq 0$. Finally, let T be a (\mathcal{F}_n) -stopping time with $E(T) < \infty$. Show that

$$\mathcal{E}(S_T) = \mathcal{E}(X_1)\mathcal{E}(T).$$

Exercise 4. Let $(M_n)_{n\geq 0}$ be a uniformly integrable martingale with respect to a filtration $(\mathcal{F}_n)_{n\geq 0}$.

- (1) Is it true that the collection $\{M_T : T \text{ stopping time with respect to } (\mathcal{F}_n)_{n \geq 0}\}$ is uniformly integrable?
- (2) Let T be a stopping time. Is it true that $(M_{n\wedge T})_{n\geq 0}$ is a uniformly integrable martingale? Justify your answer.

Submission of solutions. Hand in your solutions by 18:00, 20/12/2024 following the instructions on the course website

https://metaphor.ethz.ch/x/2024/hs/401-3601-00L/