Numerical Methods for Elliptic and Parabolic Partial Differential Equations

Exercise Sheet 2

Jörg Nick, Thea Kosche

October 17, 2024

Exercise 1. Let $\Omega = B(0,1) \subset \mathbb{R}^d$ be the open ball of radius 1 centered at $0 \in \mathbb{R}^d$. Find $\phi \in H^1(\Omega)$ such that $\Delta \phi \in L^2(\Omega)$ however $\phi \notin H^2(\Omega)$. In other words find $\phi \in H^1(\Omega, \Delta)$ such that $\phi \notin H^2(\Omega)$.

Exercise 2. Let $\Omega = \{x \in \mathbb{R}^2 | x_1, x_2 \in (-1, 1)\}$ denote the open cube centered at the origin with length 2. Show that the trace operator $\gamma_0 : H^1(\Omega) \to L^2(\partial\Omega)$ fulfills

 $\|\gamma_0\|_{L^2(\partial\Omega)\leftarrow H^1(\Omega)} \le 2.$

You can find some hints on the next page.

Hint 1: Show the estimate for $\gamma: C^{\infty}(\overline{\Omega}) \cap H^1(\Omega) \to L^2(\partial\Omega)$ and argue by density.

Hint 2: Show the estimates only for one of the four edges of $\partial\Omega$ and use the symmetry. **Hint 3**: Use the auxiliary function $s \mapsto su(s, 1)^2$ for $s \in (0, 1)$ and make use of the fundamental

Hint 3: Use the auxiliary function $s \mapsto su(s, 1)^2$ for $s \in (0, 1)$ and make use of the fundamental theorem of calculus.