Numerical Methods for Elliptic and Parabolic Partial Differential Equations

Exercise Sheet 7

Jörg Nick, Thea Kosche

November 13, 2024

Exercise 1. Prove an one-dimensional "inverse inequality": let $\Omega := (0,1) \subset \mathbb{R}$ and $\mathcal{T} := \{K_j : 1 \leq j \leq N_T\}$ be a 1D finite element mesh of Ω . Prove that there exists $C \geq 0$ such that

 $\|u'\|_{L^2(\Omega)} \le Ch^{-1} \|u\|_{L^2(\Omega)} \quad \forall u \in S_1(\mathcal{T}),$

where $h := \min_{K \in \mathcal{T}} h_K$.

Exercise 2. For the triangular meshes depicted in the file **TriangulationMeshes.pdf**, perform the closure algorithm by inserting the necessary refinements such that the triangulation becomes conforming.

Hint: you can draw the refinement meshes directly on the pdf document.