Numerical Methods for Elliptic and Parabolic Partial Differential Equations

Exercise Sheet 9

Jörg Nick, Thea Kosche

December 1, 2024

Exercise 1 (Derive the posteriori estimate in 1D).

Let $\Omega :=]0,1[$ and $\mathcal{T} := \{K_i : 1 \leq i \leq N\}$, i.e. $K_i := [x_{i-1}, x_i]$ for some $0 = x_0 < \cdots < x_N = 1$, $S := \{\varphi \in H_0^1(\Omega) \mid \forall K_i \in \mathcal{T} : \varphi|_{K_i} \in \mathbb{P}_1\}$. Let $f \in L^2(\Omega)$ and suppose u satisfies the equation

-u'' = f,

with homogeneous Dirichlet boundary condition and u_S is the finite element approximation of u using S. Repeat the proof of (8.10) from manuscript to derive an estimate of the form (1).¹ How should the local quantities $\eta_K(u_S)$ be defined in this case?

$$\|u - u_S\|_{H^1(\Omega)} \leqslant C_{\sqrt{\sum_{K \in \mathcal{T}} \eta_K^2(u_S)}}$$
(1)

Hint. You may use the existence of a Clément interpolation operator in 1D. This is an operator with the properties from Satz 8.1 in the lectur notes.

Exercise 2. Use Exercise 1 to implement an adaptive solution procedure for the following boundary value problem

-u'' = f in $\Omega = (0, 1)$, u(0) = u(1) = 0, $f \in L^2(\Omega)$

Hint: The procedure should be implemented with iterative application of

INITIALIZE: $\mathcal{T}_0 := [K_1, K_2]$ where $K_1 := [0, \frac{1}{2}]$ and $K_2 := [\frac{1}{2}, 1]$; refinement parameter $\alpha = 0.7$; stopping criteria $\varepsilon > 0$.

- (a) SOLVE: assume \mathcal{T}_i is generated. Solve the discrete problem for \mathcal{T}_i , hence obtain the approximation solution u_i on \mathcal{T}_i ;
- (b) ESTIMATE: compute η_K for all $K \in \mathcal{T}_i$ and set $\eta_{\max} = \max_{K \in \mathcal{T}_i} \eta_K(u_i)$; if $\eta_{\max} \leq \varepsilon$ holds, STOP; otherwise:
- (c) MARK: mark all K for refinement which satisfy $\eta_K \ge \alpha \eta_{\max}$;
- (d) REFINE: bisect all marked intervals $K \in \mathcal{T}_i$ to obtain \mathcal{T}_{i+1} , increase i by 1 and go back to (a).

Exercise 3. Choose $f = \frac{1}{x^{1/3}}$ for the BVP in Exercise 1 and 2, verify that $u = -\frac{9}{10}x(x^{2/3}-1)$ is the exact solution. Let your code run: depict the sequence of meshes, the error indicator and the exact error for each mesh \mathcal{T}_i in the same picture.

¹This topic has been treated in the lecture in the week of November 19 and 20.