Numerical Methods for Elliptic and Parabolic Partial Differential Equations

Jörg Nick, Thea Kosche

December 10, 2024

Exercise 1

Consider the heat equation

$$\dot{u} - \Delta u = 0,$$

with the initial condition $u(0) = v_0$, for some initial data $v_0 \in H_0^1(\Omega)$. Moreover, we enforce homogeneous Dirichlet boundary conditions (seek $u(\cdot, t) \in H_0^1(\Omega)$ for all t > 0. We discretize the problem in space, by the finite element method, which gives the following finite-dimensional evolution problem

$$\boldsymbol{M}\dot{\boldsymbol{u}} - \boldsymbol{A}\boldsymbol{u} = 0, \qquad \boldsymbol{u}(0)_j = v_0(x_j).$$

where M and A denote the mass and stiffness matrix, x_j the nodes of an underlying finite element mesh. The following constraints complete the problem formulation, but feel free to change any of them if you are interested in a different problem.

- Set $\Omega = [0, 1]^2$ and $v_0 = \sin(\pi x_1) \sin(\pi x_2)$.
- The exact solution is then given by $u(x,t) = e^{-2\pi^2 t} \sin(\pi x_1) \sin(\pi x_2)$.

In this setup, extend the implementation developed in the lecture to the heat equation, in the following ways:

- Use the implicit Euler method to approximate the solution of the heat equation.
- Use the explicit Euler method to approximate the solution to the heat equation. (Which only works for sufficiently small τ).

Use the finite element code from the lecture (in 2D), or the last exercise (in 1D) for the matrix assembly (to compute M and A). If you choose to use the 1D code, you can easily derive a similar exact solution by setting $v_0 = \sin(\pi x)$ (on the interval $\Omega = [0, 1]$).