Mathematical Foundations for Finance

Exercise sheet 1

The first three exercises of this sheet contain material which is **fundamental** for the course and **assumed to be known**. Please hand in your solutions by 12:00 on Wednesday, October 2 via the course homepage.

Exercise 1.1 Let $\Omega = \{\omega_1, \omega_2, \dots, \omega_N\}$ be a finite set and $X : \Omega \to \mathbb{R}$ a mapping which takes the values +5, 0 and -5. You can think of X as a stock price change over one time period.

- (a) What is the σ -field $\sigma(X)$ generated by X?
- (b) Show that |X| is measurable with respect to $\sigma(X^2)$.
- (c) Let $Y: \Omega \to \mathbb{R}$ be another function. If $\sigma(Y) = 2^{\Omega}$, what can you say about Y?

Exercise 1.2 Consider a probability space (Ω, \mathcal{F}, P) . A σ -algebra $\mathcal{F}_0 \subseteq \mathcal{F}$ is said to be *P*-trivial if $P[A] \in \{0, 1\}$ for all $A \in \mathcal{F}_0$. Prove that \mathcal{F}_0 is *P*-trivial if and only if every \mathcal{F}_0 -measurable random variable $X : \Omega \to \mathbb{R}$ is *P*-a.s. constant.

Exercise 1.3 Let (Ω, \mathcal{F}, P) be a probability space, X an integrable random variable and $\mathcal{G} \subseteq \mathcal{F}$ a σ -field. Then, the *P*-a.s. unique random variable *Z* such that

- Z is \mathcal{G} -measurable and integrable,
- $E[X\mathbb{1}_A] = E[Z\mathbb{1}_A]$ for all $A \in \mathcal{G}$,

is called the conditional expectation of X given \mathcal{G} and is denoted by $E[X|\mathcal{G}]$. [This is the formal definition of the conditional expectation of X given \mathcal{G} ; see Section 8.2 in the lecture notes.]

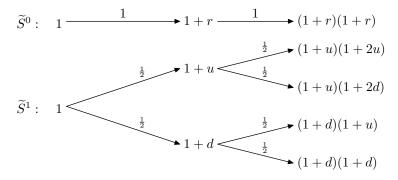
- (a) Show that if X is \mathcal{G} -measurable, then $E[X | \mathcal{G}] = X P$ -a.s.
- (b) Show that $E[E[X | \mathcal{G}]] = E[X]$.
- (c) Show that if $P[A] \in \{0,1\}$ for all $A \in \mathcal{G}$ (that is, if \mathcal{G} is *P*-trivial), then $E[X | \mathcal{G}] = E[X]$ *P*-a.s.
- (d) Consider an integrable random variable Y on (Ω, \mathcal{F}, P) , and some constants $a, b \in \mathbb{R}$. Show that $E[aX + bY | \mathcal{G}] = aE[X | \mathcal{G}] + bE[Y | \mathcal{G}] P$ -a.s.
- (e) Suppose that \mathcal{G} is generated by a finite partition of Ω , i.e., there exists a collection $(A_i)_{i=1,\ldots,n}$ of sets $A_i \in \mathcal{F}$ such that $\bigcup_{i=1}^n A_i = \Omega$, $A_i \cap A_j = \emptyset$ for $i \neq j$ and $\mathcal{G} = \sigma(A_1, \ldots, A_n)$. Additionally, assume that $P[A_i] > 0$ for all $i = 1, \ldots, n$. Show that

$$E[X \mid \mathcal{G}] = \sum_{i=1}^{n} E[X \mid A_i] \mathbb{1}_{A_i} P\text{-a.s.}$$

This says that the conditional expectation of a random variable given a finitely generated σ algebra is a *piecewise constant* function with the constants given by the elementary conditional expectations given the sets of the generating partition. [This is a very useful property when one conditions on a finitely generated σ -algebra, as for instance in the multinomial model.]

Hint 1: Recall that $E[X | A_i] = E[X \mathbb{1}_{A_i}] / P[A_i]$ and try to write X as a sum of random variables each of which only takes non-zero values on a single A_i . *Hint 2:* Check that any set $A \in \mathcal{G}$ has the form $\bigcup_{i \in J} A_i$ for some $J \subseteq \{1, \ldots, n\}$.

Exercise 1.4 Consider a financial market $(\tilde{S}^0, \tilde{S}^1)$ given by the following trees, where the numbers beside the branches denote transition probabilities:



Intuitively, this means that the volatility of \tilde{S}^1 increases after a stock price increase in the first period. Assume that $u, r \ge 0$ and $-0.5 < d \le 0$.

- (a) Construct for this setup a multiplicative model consisting of a probability space (Ω, \mathcal{F}, P) , a filtration $\mathbb{F} = (\mathcal{F}_k)_{k=0,1,2}$, two random variables Y_1 and Y_2 and two adapted stochastic processes \tilde{S}^0 and \tilde{S}^1 such that $\tilde{S}_k^1 = \prod_{j=1}^k Y_j$ for k = 0, 1, 2.
- (b) For which values of u and d are Y_1 and Y_2 uncorrelated?
- (c) For which values of u and d are Y_1 and Y_2 independent?
- (d) For which values of u, r and d is the discounted stock process S^1 a *P*-martingale?