Mathematical Foundations for Finance Exercise Sheet 11

Please hand in your solutions by 12:00 on Wednesday, December 11 via the [course](https://metaphor.ethz.ch/x/2024/hs/401-3913-01L/) [homepage.](https://metaphor.ethz.ch/x/2024/hs/401-3913-01L/)

Exercise 11.1 Let $X = (X_t)_{t \geq 0}$ be a continuous semimartingale null at 0. We define the process

$$
Z := \mathcal{E}(X) := e^{X - \frac{1}{2}[X]}.
$$

(a) Show via Itô's formula that

$$
Z_t = 1 + \int_0^t Z_s \, dX_s, \ P\text{-a.s., for } t \ge 0. \tag{1}
$$

Conclude that *Z* is a continuous local martingale if and only if *X* is a continuous local martingale.

Hint: You may compute Itô's formula for $f(x, y) := e^{x - \frac{1}{2}y}$.

- (b) Show that $Z = \mathcal{E}(X)$ is the unique solution to [\(1\)](#page-0-0). *Hint: You may compute Z* ′*/Z using Itô's formula, where Z* ′ *is another solution of Equation* [\(1\)](#page-0-0)*.*
- (c) Let $Y = (Y_t)_{t \geq 0}$ be another continuous semimartingale null at 0. Prove *Yor's formula*

$$
\mathcal{E}(X)\mathcal{E}(Y) = \mathcal{E}(X + Y + [X, Y]), \ P\text{-a.s.}
$$

Hint: You may deduce this formula from the uniqueness proved at point (b).

Exercise 11.2 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space where the filtration $\mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}$ satisfies the usual conditions. Consider two independent Brownian motions $W^1 = (W_t^1)_{t \in [0,T]}$ and $W^2 = (W_t^2)_{t \in [0,T]}$, and let $\tilde{S}^1 = (\tilde{S}_t^1)_{t \in [0,T]}$ and $\tilde{S}^2 = (\tilde{S}_t^2)_{t \in [0,T]}$ be two processes with the dynamics

$$
d\widetilde{S}_t^1 = \widetilde{S}_t^1 \left(\mu_1 dt + \sigma_1 dB_t^1\right), \ P\text{-a.s., } \widetilde{S}_0^1 > 0,
$$
\n
$$
d\widetilde{S}_t^2 = \widetilde{S}_t^2 \left(\mu_2 dt + \sigma_2 dB_t^2\right), \ P\text{-a.s., } \widetilde{S}_0^2 > 0,
$$

where $B^1 := W^1$ and $B^2 := \alpha W^1 +$ √ $\overline{1-\alpha^2}W^2$, for some $\alpha \in (-1,1)$, $\mu_1, \mu_2 \in \mathbb{R}$ and $\sigma_1, \sigma_2 > 0$.

(a) Find the SDEs satisfied by $X^1 := \frac{\tilde{S}^2}{\tilde{S}^1}$ S^1 and $X^2 := \frac{\widetilde{S}^1}{\widetilde{S}^2}$ *S*e2 , expressed in terms of *B*¹ and B^2 .

Updated: December $5, 2024$ $5, 2024$ $5, 2024$ 1

$$
\lfloor \; \big/ \; 2
$$

(b) Fix some $\beta_1, \beta_2 \in \mathbb{R}$, and define the continuous local martingale

$$
L^{(\beta_1,\beta_2)} := \beta_1 W^1 + \beta_2 W^2.
$$

Show that the stochastic exponential $Z^{(\beta_1,\beta_2)} := \mathcal{E}(L^{(\beta_1,\beta_2)})$ is a true martingale on [0*, T*].

Hint: You may use the independence of W^1 *and* W^2 *and Proposition 4.2.3 in the lecture notes.*

(c) Fix some $\beta_1, \beta_2 \in \mathbb{R}$, and define the probability measure $Q^{(\beta_1, \beta_2)}$, which is equivalent to *P* on \mathcal{F}_T , by

$$
dQ^{(\beta_1,\beta_2)} = Z_T^{(\beta_1,\beta_2)} dP.
$$

Show that $Z^{(\beta_1,\beta_2)}$ is the density process of $Q^{(\beta_1,\beta_2)}$ with respect to P on [0, T]. Using Girsanov's theorem, prove that the two processes $W_t^1 := W_t^1 - \beta_1 t$ and $W_t^2 := W_t^2 - \beta_2 t$, for $t \in [0, T]$, are local $Q^{(\beta_1, \beta_2)}$ -martingales. Conclude that

$$
\widetilde{B}^1 := \widetilde{W}^1 \text{ and } \widetilde{B}_t^2 := B_t^2 - (\alpha \beta_1 + \sqrt{1 - \alpha^2} \beta_2)t, \text{ for } t \in [0, T],
$$

are local $Q^{(\beta_1,\beta_2)}$ -martingales as well.

(d) What conditions on $\beta_1, \beta_2 \in \mathbb{R}$ make the processes X^1 and X^2 $Q^{(\beta_1, \beta_2)}$. martingales? Can they be martingales simultaneously under the same measure? *Hint: You may rewrite the SDEs satisfied by* X^1 *and* X^2 *in terms of* \tilde{W}^1 *and* W^2 , and use the fact (without proving it) that W^1 and W^2 are independent *Brownian motions under* $Q^{(\beta_1,\beta_2)}$ (the reasoning is analogous to point (b)).