Mathematical Foundations for Finance Exercise Sheet 11

Please hand in your solutions by 12:00 on Wednesday, December 11 via the course homepage.

Exercise 11.1 Let $X = (X_t)_{t \ge 0}$ be a continuous semimartingale null at 0. We define the process

$$Z := \mathcal{E}(X) := e^{X - \frac{1}{2}[X]}$$

(a) Show via Itô's formula that

$$Z_t = 1 + \int_0^t Z_s dX_s, \ P\text{-a.s.}, \ \text{for } t \ge 0.$$
 (1)

Conclude that Z is a continuous local martingale if and only if X is a continuous local martingale.

Hint: You may compute Itô's formula for $f(x, y) := e^{x - \frac{1}{2}y}$.

- (b) Show that Z = E(X) is the unique solution to (1).
 Hint: You may compute Z'/Z using Itô's formula, where Z' is another solution of Equation (1).
- (c) Let $Y = (Y_t)_{t \ge 0}$ be another continuous semimartingale null at 0. Prove Yor's formula

$$\mathcal{E}(X)\mathcal{E}(Y) = \mathcal{E}\left(X + Y + [X, Y]\right), \ P\text{-a.s.}$$

Hint: You may deduce this formula from the uniqueness proved at point (b).

Exercise 11.2 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space where the filtration $\mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}$ satisfies the usual conditions. Consider two independent Brownian motions $W^1 = (W_t^1)_{t \in [0,T]}$ and $W^2 = (W_t^2)_{t \in [0,T]}$, and let $\tilde{S}^1 = (\tilde{S}_t^1)_{t \in [0,T]}$ and $\tilde{S}^2 = (\tilde{S}_t^2)_{t \in [0,T]}$ be two processes with the dynamics

$$\begin{split} \mathrm{d} \widetilde{S}_t^1 &= \widetilde{S}_t^1 \left(\mu_1 \mathrm{d} t + \sigma_1 \mathrm{d} B_t^1 \right), \ P\text{-a.s.}, \ \widetilde{S}_0^1 > 0, \\ \mathrm{d} \widetilde{S}_t^2 &= \widetilde{S}_t^2 \left(\mu_2 \mathrm{d} t + \sigma_2 \mathrm{d} B_t^2 \right), \ P\text{-a.s.}, \ \widetilde{S}_0^2 > 0, \end{split}$$

where $B^1 := W^1$ and $B^2 := \alpha W^1 + \sqrt{1 - \alpha^2} W^2$, for some $\alpha \in (-1, 1), \mu_1, \mu_2 \in \mathbb{R}$ and $\sigma_1, \sigma_2 > 0$.

(a) Find the SDEs satisfied by $X^1 := \frac{\widetilde{S}^2}{\widetilde{S}^1}$ and $X^2 := \frac{\widetilde{S}^1}{\widetilde{S}^2}$, expressed in terms of B^1 and B^2 .

Updated: December 5, 2024

(b) Fix some $\beta_1, \beta_2 \in \mathbb{R}$, and define the continuous local martingale

$$L^{(\beta_1,\beta_2)} := \beta_1 W^1 + \beta_2 W^2.$$

Show that the stochastic exponential $Z^{(\beta_1,\beta_2)} := \mathcal{E}(L^{(\beta_1,\beta_2)})$ is a true martingale on [0,T].

Hint: You may use the independence of W^1 and W^2 and Proposition 4.2.3 in the lecture notes.

(c) Fix some $\beta_1, \beta_2 \in \mathbb{R}$, and define the probability measure $Q^{(\beta_1,\beta_2)}$, which is equivalent to P on \mathcal{F}_T , by

$$\mathrm{d}Q^{(\beta_1,\beta_2)} = Z_T^{(\beta_1,\beta_2)} \mathrm{d}P.$$

Show that $Z^{(\beta_1,\beta_2)}$ is the density process of $Q^{(\beta_1,\beta_2)}$ with respect to P on [0,T]. Using Girsanov's theorem, prove that the two processes $\widetilde{W}_t^1 := W_t^1 - \beta_1 t$ and $\widetilde{W}_t^2 := W_t^2 - \beta_2 t$, for $t \in [0,T]$, are local $Q^{(\beta_1,\beta_2)}$ -martingales. Conclude that

$$\widetilde{B}^1 := \widetilde{W}^1$$
 and $\widetilde{B}^2_t := B^2_t - (\alpha \beta_1 + \sqrt{1 - \alpha^2} \beta_2)t$, for $t \in [0, T]$,

are local $Q^{(\beta_1,\beta_2)}$ -martingales as well.

(d) What conditions on $\beta_1, \beta_2 \in \mathbb{R}$ make the processes X^1 and $X^2 Q^{(\beta_1,\beta_2)}$ martingales? Can they be martingales simultaneously under the same measure? *Hint: You may rewrite the SDEs satisfied by* X^1 and X^2 *in terms of* \widetilde{W}^1 *and* \widetilde{W}^2 , and use the fact (without proving it) that \widetilde{W}^1 and \widetilde{W}^2 are independent Brownian motions under $Q^{(\beta_1,\beta_2)}$ (the reasoning is analogous to point (b)).