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Exercise 11.1 Let X = (Xt)t≥0 be a continuous semimartingale null at 0. We
define the process

Z := E(X) := eX− 1
2 [X].

(a) Show via Itô’s formula that

Zt = 1 +
∫ t

0
ZsdXs, P -a.s., for t ≥ 0. (1)

Conclude that Z is a continuous local martingale if and only if X is a continuous
local martingale.
Hint: You may compute Itô’s formula for f(x, y) := ex− 1

2 y.

(b) Show that Z = E(X) is the unique solution to (1).
Hint: You may compute Z ′/Z using Itô’s formula, where Z ′ is another solution
of Equation (1).

(c) Let Y = (Yt)t≥0 be another continuous semimartingale null at 0. Prove Yor’s
formula

E(X)E(Y ) = E (X + Y + [X, Y ]) , P -a.s.
Hint: You may deduce this formula from the uniqueness proved at point (b).

Solution 11.1

(a) We apply Itô’s formula to the C2-function f(x, y) := ex− 1
2 y and the continuous

semimartingale (Xt, [X]t)t≥0. We obtain that

dZt = df(Xt, [X]t)

= ∂

∂x
f(Xt, [X]t)dXt + ∂

∂y
f(Xt, [X]t)d[X]t + 1

2
∂2

∂x2 f(Xt, [X]t)d[X]t

+ 1
2

∂2

∂y2 f(Xt, [X]t)d
[
[X]

]
t
+ ∂2

∂x∂y
f(Xt, [X]t)d

[
X, [X]

]
t
, P -a.s..

However, since X is continuous and [X] is continuous and of finite variation,
we have that

[
[X]

]
= 0, P -a.s., and

[
X, [X]

]
= 0, P -a.s. Moreover, a direct

computation shows that ∂
∂y

f + 1
2

∂2

∂x2 f = 0 and ∂
∂x

f = f . We conclude that

dZt = ZtdXt, P -a.s., or Zt = 1 +
∫ t

0
ZsdXs, P -a.s.
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As Z is a C2-transformation of the continuous semimartingale (Xt, [X]t)t≥0, the
process Z is always a continuous semimartingale (hence predictable and locally
bounded). Therefore, Z ∈ L2

loc(M) for all continuous local martingales M . If
X is a continuous local martingale, then we conclude that Z is a continuous
local martingale.

Conversely, since Z is strictly positive by definition, X is given by

dXt = 1
Zt

dZt, P -a.s., or Xt =
∫ t

0

1
Zs

dZs, P -a.s.

Therefore, if Z is a continuous local martingale, then X is a local martingale
by the same reasoning as above.

(b) Let Z ′ be another process such that

dZ ′
t = Z ′

tdXt, Z ′
0 = 1, P -a.s.

Since Z ′ is necessarily a semimartingale, we can apply Itô’s formula to the
quotient Z′

Z
= f(Z ′, Z) with the function f(x, y) = x

y
. A direct computation

yields

∂

∂x
f(x, y) = 1

y
,

∂

∂y
f(x, y) = − x

y2 ,

∂2

∂x2 f(x, y) = 0,
∂2

∂x∂y
f(x, y) = − 1

y2 ,
∂2

∂y2 f(x, y) = 2 x

y3 .

Plugging these into Itô’s formula and using that dZt = ZtdXt and dZ ′
t = Z ′

tdXt

gives that d[Z]t = Z2
t d[X]t, d[Z ′, Z]t = Z ′

tZtd[X]t which then yields

d
(

Z ′
t

Zt

)
= 1

Zt

dZ ′
t − Z ′

t

Z2
t

dZt − 1
Z2

t

d[Z ′, Z]t + Z ′
t

Z3
t

d[Z]t

= Z ′
t

Zt

dXt − Z ′
t

Zt

dXt − Z ′
t

Zt

d[X]t + Z ′
t

Zt

d[X]t
= 0, P -a.s.

Hence, we conclude that Z′
t

Zt
= 1, P -a.s., for all t ≥ 0.

(c) The product rule implies that

d
(
E(X)E(Y )

)
= E(X)dE(Y ) + E(Y )dE(X) + d[E(X), E(Y )]
= E(X)E(Y )dY + E(Y )E(X)dX + E(X)E(Y )d[X, Y ]
= E(X)E(Y )d (X + Y + [X, Y ]) .

By uniqueness of the solution to dZ = ZdX for X replaced by X + Y + [X, Y ],
we conclude that

E(X)E(Y ) = E(X + Y + [X, Y ]).
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Exercise 11.2 Let (Ω, F ,F, P ) be a filtered probability space where the filtration
F = (Ft)t∈[0,T ] satisfies the usual conditions. Consider two independent Brownian
motions W 1 = (W 1

t )t∈[0,T ] and W 2 = (W 2
t )t∈[0,T ], and let S̃1 = (S̃1

t )t∈[0,T ] and
S̃2 = (S̃2

t )t∈[0,T ] be two processes with the dynamics

dS̃1
t = S̃1

t

(
µ1dt + σ1dB1

t

)
, P -a.s., S̃1

0 > 0,

dS̃2
t = S̃2

t

(
µ2dt + σ2dB2

t

)
, P -a.s., S̃2

0 > 0,

where B1 := W 1 and B2 := αW 1 +
√

1 − α2W 2, for some α ∈ (−1, 1), µ1, µ2 ∈ R
and σ1, σ2 > 0.

(a) Find the SDEs describing the dynamics of X1 := S̃2

S̃1 and X2 := S̃1

S̃2 , expressed
in terms of B1 and B2.

(b) Fix some β1, β2 ∈ R, and define the continuous local martingale

L(β1,β2) := β1W
1 + β2W

2.

Show that the stochastic exponential Z(β1,β2) := E(L(β1,β2)) is a true martingale
on [0, T ].
Hint: You may use the independence of W 1 and W 2 and Proposition 4.2.3 in
the lecture notes.

(c) Fix some β1, β2 ∈ R, and define the probability measure Q(β1,β2), which is
equivalent to P on FT , by

dQ(β1,β2) = Z
(β1,β2)
T dP.

Show that Z(β1,β2) is the density process of Q(β1,β2) with respect to P on [0, T ].
Using Girsanov’s theorem, prove that the two processes W̃ 1

t := W 1
t − β1t and

W̃ 2
t := W 2

t − β2t, for t ∈ [0, T ], are local Q(β1,β2)-martingales. Conclude that

B̃1 := W̃ 1 and B̃2
t := B2

t − (αβ1 +
√

1 − α2β2)t, for t ∈ [0, T ],

are local Q(β1,β2)-martingales as well.

(d) What conditions on β1, β2 ∈ R make the processes X1 and X2 Q(β1,β2)-
martingales? Can they be martingales simultaneously under the same measure?
Hint: You may rewrite the SDEs describing the dynamics of X1 and X2 in
terms of W̃ 1 and W̃ 2, and use the fact (without proving it) that W̃ 1 and W̃ 2

are independent Brownian motions under Q(β1,β2) (the reasoning is analogous
to point (b)).

Solution 11.2
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(a) Take i ̸= j, where i, j ∈ {1, 2}. By Itô’s formula, we get

dX i = d
(

S̃j

S̃i

)
= 1

S̃i
dS̃j − S̃j

(S̃i)2 dS̃i − 1
(S̃i)2 d[S̃i, S̃j] + S̃j

(S̃i)3 d[S̃i]

= X i
(
(µj − µi + σ2

i − ασiσj)dt + σjdBj − σidBi
)

, P -a.s.

(b) Fix some β1, β2 ∈ R. Then, L(β1,β2) is clearly a martingale, whose quadratic
variation satisfies, for all t ∈ [0, T ],[

L(β1,β2)
]

t
= [β1W

1 + β2W
2]t = β2

1t + β2
2t, P -a.s.,

where we have used that [W 1, W 2] = 0, P -a.s. Moreover, by independence of
W 1 and W 2 and Proposition 4.2.3 in the lecture notes, we have

E

Z
(β1,β2)
t

Z
(β1,β2)
s

∣∣∣∣∣∣Fs

 = E

eβ1W 1
t +β2W 2

t − 1
2 (β2

1+β2
2)t

eβ1W 1
s +β2W 2

s − 1
2 (β2

1+β2
2)s

∣∣∣∣∣∣Fs


= E

[
eβ1(W 1

t −W 1
s )+β2(W 2

t −W 2
s )− 1

2 (β2
1+β2

2)(t−s)
∣∣∣Fs

]
= e− 1

2 (β2
1+β2

2)(t−s)E
[
eβ1(W 1

t −W 1
s )+β2(W 2

t −W 2
s )
∣∣∣Fs

]
= e− 1

2 β2
1(t−s)E

[
eβ1(W 1

t −W 1
s )
]

e− 1
2 β2

2(t−s)E
[
eβ2(W 2

t −W 2
s )
]

= 1, P -a.s., for s, t ∈ [0, T ] with s ≤ t,

so Z(β1,β2) has the martingale property. Adaptedness is clear and the in-
tegrability follows from the fact that Z

(β1,β2)
t is a log-normally distributed

random variable for all t ∈ [0, T ], and we know that all moments of log-normal
distributions are finite. Therefore, Z

(β1,β2)
t is a martingale.

(c) We prove that Z
(β1,β2)
t = Z̃

(β1,β2)
t , P -a.s., for any t ∈ [0, T ], where Z̃(β1,β2)

denotes the density process of Q(β1,β2) with respect to P on [0, T ]. Let us fix
t ∈ [0, T ], and some A ∈ Ft. It holds that

EP

[
1AZ̃

(β1,β2)
t

]
= EQ(β1,β2) [1A] = EP

[
1AZ

(β1,β2)
T

]
= EP

[
1A EP

[
Z

(β1,β2)
T |Ft

]]
.

Using the martingale property of Z(β1,β2), we deduce that

E
[
1AZ̃

(β1,β2)
t

]
= E

[
1A Z

(β1,β2)
t

]
,

and we conclude that Z̃
(β1,β2)
t = Z

(β1,β2)
t , P -a.s., by the arbitrariness of A.

By Girsanov’s theorem in the form of Theorem 6.2.3 in the lecture notes, we
know that

W 1 − [L(β1,β2), W 1] and W 2 − [L(β1,β2), W 2]
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are local Q(β1,β2)-martingales. Thus, it suffices to show that for all t ∈ [0, T ],
we have [

L(β1,β2), W 1
]

t
= β1t, P -a.s., and [L(β1,β2), W 2]t = β2t, P -a.s.

But this follows immediately from the independence of W 1 and W 2 and the
definition of L(β1,β2).

To conclude, we simply write the definition of the corresponding process B̃2 to
get

B̃2
t := B2

t − (αβ1 +
√

1 − α2β2)t := α(W 1
t − β1t) +

√
1 − α2(W 2

t − β2t)
= αW̃ 1

t +
√

1 − α2W̃ 2
t , for t ∈ [0, T ],

(2)

which is a linear combination of local Q(β1,β2)-martingales.

(d) First, we note that X1 and X2 still satisfy the same SDEs under Q(β1,β2) with
the only difference that B1 and B2 are in general no longer Brownian motions
under Q(β1,β2). Using that B̃1 and B̃2 are local martingales under Q(β1,β2), we
get by (a) that

dX i = X i
(
(µj − µi + σ2

i − ασiσj)dt + σjd(B̃j + γjt) − σid(B̃i + γit)
)

= X i
(
(µj − µi + σ2

i − ασiσj + σjγj − σiγi)dt + σjdB̃j − σidB̃i
)

, (3)

where γ1 := β1 and γ2 := αβ1 +
√

1 − α2β2. Next, X i is a local Q(β1,β2)-
martingale if and only if the drift component in (3) vanishes, i.e.,

µj − µi + σ2
i − ασiσj + σjγj − σiγi = 0. (4)

Now, we express the local martingale components in terms of W̃ 1 and W̃ 2 (see
Equation (2)), σ1dB̃1 − σ2dB̃2 = (σ1 − σ2α)dW̃ 1 − σ2

√
1 − α2dW̃ 2,

σ2dB̃2 − σ1dB̃1 = σ2
√

1 − α2dW̃ 2 − (σ1 − σ2α)dW̃ 1.

Since W̃ 1 and W̃ 2 are independent Brownian motions under Q(β1,β2), we may
argue analogously to (b) that X1 and X2 are true Q(β1,β2)-martingales provided
that (4) holds.

Finally, either X1 or X2 can be a martingale but not both simultaneously. In
fact, because X2 = 1/X1 and R+ ∋ x 7→ 1/x is a strictly convex function,
Jensen’s inequality gives P̃

(
EP̃ [X2

t |Fs] > 1/EP̃ [X1
t |Fs]

)
> 0, for s, t ∈ [0, T ]

with s ≤ t, for any probability P̃ such that X1 is a true P̃ -martingale.
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