Mathematical Foundations for Finance Exercise Sheet 12

Please hand in your solutions by 12:00 on Wednesday, December 18 via the course homepage.

Exercise 12.1 Let (Ω, \mathcal{F}, P) be a probability space with a filtration $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$ satisfying the usual conditions. Assume that \mathcal{F}_0 is P-trivial and consider a Brownian motion W on this space.

(a) Prove that any continuous, adapted process H is predictable and locally bounded.

Hint: Recall that a process X is locally bounded if there is a sequence of stopping times $(\tau_n)_{n\in\mathbb{N}}$ increasing to infinity such that X^{τ_n} is uniformly bounded P-a.s.

(b) Prove that any predictable, locally bounded process H is an element of $L^2_{loc}(W)$.

Exercise 12.2 Let T > 0 denote a fixed time horizon and $W = (W_t)_{t \in [0,T]}$ a Brownian motion on some probability space (Ω, \mathcal{F}, P) . Let $\mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}$ be the filtration generated by W and augmented by the P-nullsets in $\sigma(W_s; s \leq T)$. Consider the Black–Scholes model, where the undiscounted bank account price process $\tilde{S}^0 = (\tilde{S}^0_t)_{t \in [0,T]}$ and the undiscounted stock price process $\tilde{S}^1 = (\tilde{S}^1_t)_{t \in [0,T]}$ are given by

$$d\widetilde{S}_t^0 = \widetilde{S}_t^0 r dt \quad \text{and} \quad d\widetilde{S}_t^1 = \widetilde{S}_t^1 \left(\mu dt + \sigma dW_t \right), \tag{1}$$

where $r, \mu \in \mathbb{R}$ and $\sigma > 0$ as well as $\tilde{S}_0^0 = 1$ and $\tilde{S}_0^1 > 0$ are deterministic.

(a) Prove using Itô's formula and (1) that the discounted stock price process $S^1=\tilde{S}^1/\tilde{S}^0$ solves

$$dS_t^1 = S_t^1 \Big((\mu - r) dt + \sigma dW_t \Big). \tag{2}$$

(b) Prove using Itô's formula that

$$S^{1} = \left(S_{0}^{1} \exp\left(\sigma W_{t} + \left(\mu - r - \frac{1}{2}\sigma^{2}\right)t\right)\right)_{t \in [0,T]},$$

i.e. show that the process $\left(S_0^1 \exp\left(\sigma W_t + \left(\mu - r - \frac{1}{2}\sigma^2\right)t\right)\right)_{t \in [0,T]}$ solves (2).

(c) Let $L^{\lambda} := -\lambda W$ and $Z^{\lambda} := \mathcal{E}(L^{\lambda})$. Prove that the process $W^{\lambda} := (W_t + \lambda t)_{t \in [0,T]}$ is a Brownian motion under the measure Q_{λ} given by $\frac{dQ_{\lambda}}{dP} := Z_T^{\lambda}$.

Updated: December 18, 2024

(d) Prove that for the right choice of λ , the discounted stock price process S^1 is a Q_{λ} -martingale.

Hint: Rewrite $\sigma W_t + \left(\mu - r - \frac{1}{2}\sigma^2\right)t$ as a function of W_t^{λ} , t, σ , μ , and r.

Exercise 12.3 Let T > 0 denote a fixed time horizon and let $W = (W_t)_{t \in [0,T]}$ be a Brownian motion on some probability space (Ω, \mathcal{F}, P) . Let $\mathbb{F} = (\mathcal{F}_t)_{t \in [0,T]}$ be the filtration generated by W and augmented by the P-nullsets in $\sigma(W_s; 0 \le s \le T)$. Consider the Black–Scholes model, where the undiscounted bank account price process $\tilde{S}^0 = (\tilde{S}^0_t)_{t \in [0,T]}$ and the undiscounted stock price process $\tilde{S}^1 = (\tilde{S}^1_t)_{t \in [0,T]}$ are given by

$$\frac{\mathrm{d}\widetilde{S}_t^0}{\widetilde{S}_t^0} = r \, \mathrm{d}t \quad \text{and} \quad \frac{\mathrm{d}\widetilde{S}_t^1}{\widetilde{S}_t^1} = \mu \, \mathrm{d}t + \sigma \, \mathrm{d}W_t \,,$$

where $r, \mu \in \mathbb{R}$ and $\sigma > 0$ as well as $\tilde{S}_0^0 = 1$ and $\tilde{S}_0^1 > 0$ are deterministic. Using the notation of the previous exercise, denote $Q^* := Q_{\lambda^*}$, where λ^* is the unique value of λ making Q_{λ} an equivalent martingale measure for $S^1 := \tilde{S}^1/\tilde{S}^0$.

Hint: If you did not find λ^* in the Exercise 12.2(d), you can use that $\lambda^* := \frac{\mu - r}{\sigma}$.

(a) Hedge the square option, i.e., find a self-financing strategy $\varphi = (V_0, \vartheta)$ such that

$$V_0 + \int_0^T \vartheta_u \, \mathrm{d}S_u^1 = \frac{(\widetilde{S}_T^1)^2}{\widetilde{S}_T^0}.$$

Hint: Look for a representation result under Q^* , not under P.

(b) Hedge the *inverted option*, i.e., find a self-financing strategy $\varphi = (\overline{V}_0, \overline{\vartheta})$ such that

$$\overline{V}_0 + \int_0^T \overline{\vartheta}_u \, \mathrm{d}S^1_u = \frac{1}{\widetilde{S}^0_T \widetilde{S}^1_T}.$$

Exercise 12.4 A *Poisson process* with parameter $\lambda > 0$ with respect to a probability measure P and a filtration $\mathbb{F} = (\mathcal{F}_t)_{t \geq 0}$ is a (real-valued) stochastic process $N = (N_t)_{t \geq 0}$ which is adapted to \mathbb{F} , has $N_0 = 0$ P-a.s. and satisfies the following two properties:

(PP1) For $0 \le s < t$, the *increment* $N_t - N_s$ is independent (under P) of \mathcal{F}_s and is (under P) Poisson-distributed with parameter $\lambda(t-s)$, i.e.

$$P[N_t - N_s = k] = e^{-\lambda(t-s)} \frac{(\lambda(t-s))^k}{k!}, \quad k \in \mathbb{N}_0.$$

(PP2) N is a counting process with jumps of size 1, i.e. for P-almost all $\omega \in \Omega$, the function $t \mapsto N_t(\omega)$ is right-continuous with left limits (RCLL), piecewise constant, \mathbb{N}_0 -valued, and increases by jumps of size 1.

Updated: December 18, 2024

Poisson processes form the cornerstone of *jump processes*, which are of importance in advanced financial modelling. Show that the following processes are (P, \mathbb{F}) -martingales:

- (a) $\widetilde{N}_t := N_t \lambda t$, $t \geq 0$. This process is also called a *compensated Poisson process*. Hint: If $X \sim Poi(\lambda)$, then $E[X] = \lambda$.
- (b) $\widetilde{N}_t^2 N_t$, $t \ge 0$, and $\widetilde{N}_t^2 \lambda t$, $t \ge 0$. Use these results to derive $[\widetilde{N}]$ and $\langle \widetilde{N} \rangle$. Hint: If $X \sim Poi(\lambda)$, then $Var[X] = \lambda$.
- (c) $S_t := e^{N_t \log(1+\sigma) \lambda \sigma t}$, $t \ge 0$, where $\sigma > -1$. S is also called a geometric Poisson process.