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Exercise 12.1 Let (Ω, F , P ) be a probability space with a filtration F = (Ft)t≥0
satisfying the usual conditions. Assume that F0 is P -trivial and consider a Brownian
motion W on this space.

(a) Prove that any continuous, adapted process H is predictable and locally
bounded.

Hint: Recall that a process X is locally bounded if there is a sequence of stopping
times (τn)n∈N increasing to infinity such that Xτn is uniformly bounded P -a.s.

(b) Prove that any predictable, locally bounded process H is an element of L2
loc(W ).

Exercise 12.2 Let T > 0 denote a fixed time horizon and W = (Wt)t∈[0,T ] a
Brownian motion on some probability space (Ω, F , P ). Let F = (Ft)t∈[0,T ] be
the filtration generated by W and augmented by the P -nullsets in σ(Ws; s ≤ T ).
Consider the Black–Scholes model, where the undiscounted bank account price
process S̃0 = (S̃0

t )t∈[0,T ] and the undiscounted stock price process S̃1 = (S̃1
t )t∈[0,T ] are

given by
dS̃0

t = S̃0
t r dt and dS̃1

t = S̃1
t

(
µ dt + σ dWt

)
, (1)

where r, µ ∈ R and σ > 0 as well as S̃0
0 = 1 and S̃1

0 > 0 are deterministic.

(a) Prove using Itô’s formula and (1) that the discounted stock price process
S1 = S̃1/S̃0 solves

dS1
t = S1

t

(
(µ − r)dt + σdWt

)
. (2)

(b) Prove using Itô’s formula that

S1 =
(

S1
0 exp

(
σWt +

(
µ − r − 1

2σ2
)

t
))

t∈[0,T ]
,

i.e. show that the process
(

S1
0 exp

(
σWt +

(
µ − r − 1

2σ2
)
t
))

t∈[0,T ]
solves (2).

(c) Let Lλ := −λW and Zλ := E(Lλ). Prove that the process W λ :=
(
Wt +

λt
)

t∈[0,T ]
is a Brownian motion under the measure Qλ given by dQλ

dP
:= Zλ

T .
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(d) Prove that for the right choice of λ, the discounted stock price process S1 is a
Qλ-martingale.

Hint: Rewrite σWt +
(

µ − r − 1
2σ2

)
t as a function of W λ

t , t, σ, µ, and r.

Exercise 12.3 Let T > 0 denote a fixed time horizon and let W = (Wt)t∈[0,T ] be
a Brownian motion on some probability space (Ω, F , P ). Let F = (Ft)t∈[0,T ] be the
filtration generated by W and augmented by the P -nullsets in σ(Ws; 0 ≤ s ≤ T ).
Consider the Black–Scholes model, where the undiscounted bank account price
process S̃0 = (S̃0

t )t∈[0,T ] and the undiscounted stock price process S̃1 = (S̃1
t )t∈[0,T ] are

given by
dS̃0

t

S̃0
t

= r dt and dS̃1
t

S̃1
t

= µ dt + σ dWt ,

where r, µ ∈ R and σ > 0 as well as S̃0
0 = 1 and S̃1

0 > 0 are deterministic. Using the
notation of the previous exercise, denote Q∗ := Qλ∗ , where λ∗ is the unique value of
λ making Qλ an equivalent martingale measure for S1 := S̃1/S̃0.

Hint: If you did not find λ∗ in the Exercise 12.2(d), you can use that λ∗ := µ−r
σ

.

(a) Hedge the square option, i.e., find a self-financing strategy φ=̂(V0, ϑ) such that

V0 +
∫ T

0
ϑu dS1

u = (S̃1
T )2

S̃0
T

.

Hint: Look for a representation result under Q∗, not under P .

(b) Hedge the inverted option, i.e., find a self-financing strategy φ=̂(V 0, ϑ) such
that

V 0 +
∫ T

0
ϑu dS1

u = 1
S̃0

T S̃1
T

.

Exercise 12.4 A Poisson process with parameter λ > 0 with respect to a probability
measure P and a filtration F = (Ft)t≥0 is a (real-valued) stochastic process N =
(Nt)t≥0 which is adapted to F, has N0 = 0 P -a.s. and satisfies the following two
properties:

(PP1) For 0 ≤ s < t, the increment Nt − Ns is independent (under P ) of Fs and is
(under P ) Poisson-distributed with parameter λ(t − s), i.e.

P [Nt − Ns = k] = e−λ(t−s) (λ(t − s))k

k! , k ∈ N0.

(PP2) N is a counting process with jumps of size 1, i.e. for P -almost all ω ∈ Ω, the
function t 7→ Nt(ω) is right-continuous with left limits (RCLL), piecewise
constant, N0-valued, and increases by jumps of size 1.
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Poisson processes form the cornerstone of jump processes, which are of importance
in advanced financial modelling. Show that the following processes are (P,F)-
martingales:

(a) Ñt := Nt − λt, t ≥ 0. This process is also called a compensated Poisson process.
Hint: If X ∼ Poi(λ), then E [X] = λ.

(b) Ñ2
t − Nt, t ≥ 0, and Ñ2

t − λt, t ≥ 0. Use these results to derive [Ñ ] and ⟨Ñ⟩.
Hint: If X ∼ Poi(λ), then Var[X] = λ.

(c) St := eNt log(1+σ)−λσt, t ≥ 0, where σ > −1. S is also called a geometric Poisson
process.
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