
ETH Zürich, Fall 2024
Prof. Dr. Dylan Possamaï

Coordinator
Daria Sakhanda

Mathematical Foundations for Finance
Exercise Sheet 12

Exercise 12.1 Let (Ω, F , P ) be a probability space with a filtration F = (Ft)t≥0
satisfying the usual conditions. Assume that F0 is P -trivial and consider a Brownian
motion W on this space.

(a) Prove that any continuous, adapted process H is predictable and locally
bounded.

Hint: Recall that a process X is locally bounded if there is a sequence of stopping
times (τn)n∈N increasing to infinity such that Xτn is uniformly bounded P -a.s.

(b) Prove that any predictable, locally bounded process H is an element of L2
loc(W ).

Solution 12.1

(a) Recall that a process H is predictable if it is P-measurable when viewed as
a mapping H : Ω → R, for Ω := Ω × (0, ∞) and P being the σ-field on Ω
generated by all left-continuous adapted processes. Since H is adapted and
continuous (therefore also left-continuous), it is obviously predictable.

Define now (τn)n∈N as

τn := inf{t ≥ 0 | |Ht| > n}

for all n ∈ N. Observe that τn is a stopping time for all n ∈ N by the continuity
of H and the right-continuity of the filtration. The sequence (τn)n∈N is then
clearly increasing P -a.s. since the Brownian Motion has P -a.s. continuous
trajectories.

Fix now ω ∈ Ω such that the map t 7→ Ht(ω) is continuous. Since continuous
functions are bounded on compact intervals, we have that for all T ≥ 0, there
exists an N := N(ω, T ) ∈ N such that |Ht(ω)| < N for all t ∈ [0, T ], and
thus τn(ω) ≥ T for all n ≥ N . As a result limn→∞ τn(ω) = ∞ and hence
limn→∞ τn = ∞ P -a.s. We can thus conclude that (τn)n∈N defines a localizing
sequence.

Finally, by definition of τn, we have that for all ω ∈ Ω,

|Ht(ω)| ≤ n ∀ t < τn(ω).

Moreover, there are two possible cases. Either τn(ω) = 0 and hence |Hτn(ω)(ω)| =
|H0(ω)|, or τn(ω) > 0 and hence [0, τn(ω)) ̸= ∅ and by continuity of H we can
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compute
|Hτn(ω)(ω)| = lim

t→τn(ω)
t<τn(ω)

|Ht(ω)| ≤ n

for P -a.a. ω ∈ Ω. Since F0 is P -trivial, H0 = h0 ∈ R P -a.s. and we can
conclude that |Ht(ω)| ≤ n ∨ |h0| for all t ≤ τn(ω) and P -a.a. ω ∈ Ω and thus

|Hτn
t | ≤ n ∨ |h0| P -a.s., for all t ≥ 0. (1)

(b) Since W is a continuous (local) martingale, H ∈ L2
loc(W ) if and only if it is

predictable and ∫ t

0
H2

s d⟨W ⟩s =
∫ t

0
H2

s ds < ∞ P -a.s.

for each t ≥ 0. The first property is true by assumption. For the second one,
let (τn)n∈N be a sequence of stopping times increasing P -a.s. to infinity such
that Hτn is uniformly bounded P -a.s. (i.e. |Hτn

t | ≤ cn for some cn ≥ 0, for all
t ≥ 0).

Let Ω0 be the set of all ω ∈ Ω such that limn→∞ τn(ω) = ∞ and |Hτn
t (ω)| ≤ cn

for all t ≥ 0 and n ∈ N. Since countable intersections of sets of probability one
are of probability 1, P [Ω0] = 1. Fix then ω ∈ Ω0 and t > 0. Observe that since
limn→∞ τn(ω) = ∞, there exists an N := N(ω, t) ∈ N such that τN (ω) > t. As
a result ∫ t

0
H2

s (ω)ds =
∫ t

0

(
HτN

s (ω)
)2

ds ≤
∫ t

0
c2

Nds = c2
N t < ∞

and hence
∫ t

0 H2
s (ω)ds < ∞ for all ω ∈ Ω0 and t > 0.

Exercise 12.2 Let T > 0 denote a fixed time horizon and W = (Wt)t∈[0,T ] a
Brownian motion on some probability space (Ω, F , P ). Let F = (Ft)t∈[0,T ] be
the filtration generated by W and augmented by the P -nullsets in σ(Ws; s ≤ T ).
Consider the Black–Scholes model, where the undiscounted bank account price
process S̃0 = (S̃0

t )t∈[0,T ] and the undiscounted stock price process S̃1 = (S̃1
t )t∈[0,T ] are

given by
dS̃0

t = S̃0
t r dt and dS̃1

t = S̃1
t

(
µ dt + σ dWt

)
, (2)

where r, µ ∈ R and σ > 0 as well as S̃0
0 = 1 and S̃1

0 > 0 are deterministic.

(a) Prove using Itô’s formula and (2) that the discounted stock price process
S1 = S̃1/S̃0 solves

dS1
t = S1

t

(
(µ − r)dt + σdWt

)
. (3)

(b) Prove using Itô’s formula that

S1 =
(

S1
0 exp

(
σWt +

(
µ − r − 1

2σ2
)

t
))

t∈[0,T ]
,
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i.e. show that the process
(

S1
0 exp

(
σWt +

(
µ − r − 1

2σ2
)
t
))

t∈[0,T ]
solves (3).

(c) Let Lλ := −λW and Zλ := E(Lλ). Prove that the process W λ :=
(
Wt +

λt
)

t∈[0,T ]
is a Brownian motion under the measure Qλ given by dQλ

dP
:= Zλ

T .

(d) Prove that for the right choice of λ, the discounted stock price process S1 is a
Qλ-martingale.

Hint: Rewrite σWt +
(

µ − r − 1
2σ2

)
t as a function of W λ

t , t, σ, µ, and r.

Solution 12.2

(a) Using that S̃0 > 0 P -a.s., we can apply Itô’s formula to the C2-function f :
R++ × R++ → R given by f(x, y) := x/y. Computing the different derivatives,
we obtain

∂f

∂x
(x, y) = 1

y
,

∂f

∂y
(x, y) = − x

y2 , and ∂2f

∂x2 (x, y) = 0,

and moreover, since S̃0 is of finite variation,

⟨S̃1, S̃0⟩ = 0 and ⟨S̃0, S̃0⟩ = 0.

By Itô’s formula, we obtain

S1
t = S̃1

t

S̃0
t

= S1
0 +

∫ t

0

1
S̃0

s

dS̃1
s +

∫ t

0

−S̃1
s

(S̃0
s )2

dS̃0
s + 0

= S1
0 +

∫ t

0

1
S̃0

s

(
S̃1

s

(
µ ds + σ dWs

))
+
∫ t

0

−S̃1
s

(S̃0
s )2

(
S̃0

s r ds
)

= S1
0 +

∫ t

0
S1

s

(
(µ − r) ds + σ dWs

)
,

or written equivalently in the differential notation,

dS1
t = S1

t ((µ − r)dt + σdWt) .

(b) Consider the C2-function f : R×R+ → R given by f(w, t) := S1
0 exp

(
σw + (µ − r − σ2/2)t

)
.

Computing the different derivatives, we obtain

∂f

∂w
(w, t) = σf(w, t), ∂f

∂t
(w, t) = (µ−r−σ2/2)f(w, t), and ∂2f

∂w2 (w, t) = σ2f(w, t),

and moreover, since (t)t∈[0,T ] is of finite variation,

⟨W, W ⟩t = t, ⟨t, W ⟩ = ⟨W, t⟩ = 0, and ⟨t, t⟩ = 0.
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By Itô’s formula, we can then compute

f(Wt, t) = S1
0 +

∫ t

0
σf(Ws, s)dWs +

∫ t

0

(
µ − r − σ2

2

)
f(Ws, s)ds + 1

2

∫ t

0
σ2f(Ws, s)ds

= S1
0 +

∫ t

0
f(Ws, s)

(
σdWs +

(
µ − r

)
ds
)

,

and thus conclude that f(Wt, t) = S1
0 exp

(
σWt + (µ − r − σ2/2)t

)
solves the

SDE.

(c) Since λt =
∫ t

0 λds, we can write W λ
t = Wt +

∫ t
0 λds. Using that Lt = −λWt =∫ t

0 −λdWs, we can then directly conclude by Girsanov’s theorem (Theorem
6.2.3 in the lecture notes), that W λ is a Qλ-Brownian motion.

(d) Note that we can write

σWt+
(

µ−r−1
2σ2

)
t = σ(W λ

t −λt)+
(

µ−r−1
2σ2

)
t = σW λ

t +
(

µ−r−1
2σ2−σλ

)
t.

Since by point (c) W λ is a Brownian motion under Qλ, we can deduce from
Proposition 4.2.2 in the lecture notes that the process(

S1
0 exp

(
σWt +

(
µ − r − 1

2σ2
)

t
))

t∈[0,T ]
(4)

is a Qλ-martingale if and only if µ − r − 1
2σ2 − σλ = −1

2σ2. Solving this
equation, we can conclude by (b), since S1 coincides with the process in (4),
that S1 is a Qλ martingale if and only if λ = µ−r

σ
.

Exercise 12.3 Let T > 0 denote a fixed time horizon and let W = (Wt)t∈[0,T ] be
a Brownian motion on some probability space (Ω, F , P ). Let F = (Ft)t∈[0,T ] be the
filtration generated by W and augmented by the P -nullsets in σ(Ws; 0 ≤ s ≤ T ).
Consider the Black–Scholes model, where the undiscounted bank account price
process S̃0 = (S̃0

t )t∈[0,T ] and the undiscounted stock price process S̃1 = (S̃1
t )t∈[0,T ] are

given by
dS̃0

t

S̃0
t

= r dt and dS̃1
t

S̃1
t

= µ dt + σ dWt ,

where r, µ ∈ R and σ > 0 as well as S̃0
0 = 1 and S̃1

0 > 0 are deterministic. Using the
notation of the previous exercise, denote Q∗ := Qλ∗ , where λ∗ is the unique value of
λ making Qλ an equivalent martingale measure for S1 := S̃1/S̃0.

Hint: If you did not find λ∗ in the Exercise 12.2(d), you can use that λ∗ := µ−r
σ

.

(a) Hedge the square option, i.e., find a self-financing strategy φ=̂(V0, ϑ) such that

V0 +
∫ T

0
ϑu dS1

u = (S̃1
T )2

S̃0
T

.
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Hint: Look for a representation result under Q∗, not under P .

(b) Hedge the inverted option, i.e., find a self-financing strategy φ=̂(V 0, ϑ) such
that

V 0 +
∫ T

0
ϑu dS1

u = 1
S̃0

T S̃1
T

.

Solution 12.3 Set λ∗ := µ−r
σ

. We know from the previous exercise that W ∗
t :=

Wt + λ∗t, t ∈ [0, T ] is a Brownian motion under the equivalent martingale measure
Q∗. Moreover, the discounted stock price process S1 = S̃1

S̃0 is a Q∗-martingale and is
explicitly given by

St = S1
0eσW ∗

t − 1
2 σ2t .

The discounted arbitrage-free value at time t of any discounted payoff H ∈ L1
+(FT , Q∗)

is given by
V ∗

t = EQ∗ [H |Ft] .

(a) We use the discussion from page 139 of the lecture notes to conclude that
V ∗

t = EQ∗ [H |Ft] may be represented as a stochastic integral of the form

V ∗
t = EQ∗ [H] +

∫ t

0
φs dS1

s , 0 ≤ t ≤ T.

In this case, we compute

V ∗
t = e−rT EQ∗

[(
S̃1

T

)2
∣∣∣∣Ft

]
= e−rT e2T rEQ∗

[(
S1

T

)2
∣∣∣∣Ft

]

= erT
(
S1

t

)2
EQ∗

[
e2σ(W ∗

T −W ∗
t )−σ2(T −t)

∣∣∣Ft

]
= e(r+σ2)T −σ2t

(
S1

t

)2
=: v

(
t, S1

t

)
. (5)

We apply Itô’s formula to v and obtain

v(t, S1
t ) = v(0, S1

0) +
∫ t

0

∂

∂x
v(t, S1

t ) dS1
t + continuous FV process.

Since the left-hand side and the stochastic integral on the right-hand side
are local (Q∗,F)-martingales, the “continuous FV process” is a local (Q∗,F)-
martingale as well and since it apparently is null at 0, it must be identically
equal to 0. Thus, it must vanish identically. We thus immediately obtain that

ϑt = ∂

∂x
v(t, S1

t ) = 2e(r+σ2)T −σ2tS1
t = 2e(r+σ2)T +(r−σ2)tS̃1

t .

For v(0, S1
0), we have that v(0, S1

0) = e(r+σ2)T (S1
0)2.
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(b) We proceed analogously as in part (a). Here, we obtain

V
∗
t = e−rT EQ∗

[
1

S̃1
T

∣∣∣∣∣Ft

]
= e−2rT 1

S1
t

EQ∗

[
S1

t

S1
T

∣∣∣∣∣Ft

]

= e−2rT 1
S1

t

EQ∗

[
e−σ(W ∗

T −W ∗
t )+ 1

2 σ2(T −t)
∣∣∣Ft

]
= e(σ2−2r)T −σ2t 1

S1
t

=: v(t, S1
t ) .

We conclude again in the same way as in (a) that

ϑt = ∂

∂x
v(t, S1

t ) = −e(σ2−2r)T −σ2t 1
(S1

t )2 = −e(σ2−2r)(T −t) 1
(S̃1

t )2

V
∗
0 = v(0, S1

0) = e(σ2−2r)T 1
S1

0
= e(σ2−2r)T 1

S̃1
0
.

Exercise 12.4 A Poisson process with parameter λ > 0 with respect to a probability
measure P and a filtration F = (Ft)t≥0 is a (real-valued) stochastic process N =
(Nt)t≥0 which is adapted to F, has N0 = 0 P -a.s. and satisfies the following two
properties:

(PP1) For 0 ≤ s < t, the increment Nt − Ns is independent (under P ) of Fs and is
(under P ) Poisson-distributed with parameter λ(t − s), i.e.

P [Nt − Ns = k] = e−λ(t−s) (λ(t − s))k

k! , k ∈ N0.

(PP2) N is a counting process with jumps of size 1, i.e. for P -almost all ω ∈ Ω, the
function t 7→ Nt(ω) is right-continuous with left limits (RCLL), piecewise
constant, N0-valued, and increases by jumps of size 1.

Poisson processes form the cornerstone of jump processes, which are of importance
in advanced financial modelling. Show that the following processes are (P,F)-
martingales:

(a) Ñt := Nt − λt, t ≥ 0. This process is also called a compensated Poisson process.
Hint: If X ∼ Poi(λ), then E [X] = λ.

(b) Ñ2
t − Nt, t ≥ 0, and Ñ2

t − λt, t ≥ 0. Use these results to derive [Ñ ] and ⟨Ñ⟩.
Hint: If X ∼ Poi(λ), then Var[X] = λ.

(c) St := eNt log(1+σ)−λσt, t ≥ 0, where σ > −1. S is also called a geometric Poisson
process.
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Solution 12.4 In all three cases, adaptedness is obvious and integrability is also
clear, since each Nt = Nt − N0 ∼ Poi(λt) has a Poisson distribution, which has finite
exponential moments and hence also finite moments of all orders. What remains to
be shown in all cases is the martingale property. Let 0 ≤ s < t.

(a) Using that Nt − Ns ∼ Poi(λ(t − s)) is independent of Fs, we get

E [Nt − Ns |Fs] = E [Nt − Ns] = λ(t − s) = λt − λs P -a.s.

Since Ns is Fs-measurable, we can rearrange the above equation to obtain

E [Nt − λt |Fs] = Ns − λs P -a.s.,

which is what we wanted to show.

(b) For any square-integrable martingale M , we have

E
[
M2

t − M2
s

∣∣∣Fs

]
= E

[
(Mt − Ms)2

∣∣∣Fs

]
for s ≤ t.

Indeed,

E
[
M2

t − M2
s

∣∣∣Fs

]
= E

[
M2

t − 2MsMt + M2
s + 2MsMt − 2M2

s

∣∣∣Fs

]
= E

[
(Mt − Ms)2 + 2MsMt − 2M2

s

∣∣∣Fs

]
= E

[
(Mt − Ms)2

∣∣∣Fs

]
+ 2MsE [Mt − Ms |Fs]

= E
[
(Mt − Ms)2

∣∣∣Fs

]
.

Using this for M = Ñ gives

E
[
Ñ2

t − Ñ2
s

∣∣∣Fs

]
= E

[
(Ñt − Ñs)

2
∣∣∣∣Fs

]
= E

[
(Nt − Ns − λ(t − s))2

∣∣∣Fs

]
= E

[
(Nt − Ns − E [Nt − Ns])2

]
= Var(Nt − Ns) = λ(t − s).

Since Ñ2
s is Fs-measurable, we can rearrange this to obtain that

E
[
Ñ2

t − λt
∣∣∣Fs

]
= Ñ2

s − λs,

which gives the martingale property for the process (Ñ2
t − λt)t≥0.

Using the previous result, we can also easily compute that

E
[
Ñ2

t − Nt − (Ñ2
s − Ns)

∣∣∣Fs

]
= E

[
Ñ2

t − Ñ2
s − (Nt − Ns)

∣∣∣Fs

]
= E

[
Ñ2

t − Ñ2
s

∣∣∣Fs

]
− E [Nt − Ns |Fs]

= λ(t − s) − λ(t − s) = 0,
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giving the martingale property for the process (Ñ2
t − Nt)t≥0. In addition, N is

null at zero, adapted to F, increasing and we have that

∆N = (∆N)2 = (∆Ñ)2

because all jumps of N are of size 1. By Theorem 5.1.1, we therefore have that
[Ñ ] = N . Additionally, the process (λt)t≥0 is null at 0, predictable, increasing,
and we have that

[Ñ ]t − λt = Nt − λt

is a (local) martingale, which means that ⟨Ñ⟩t = λt.

(c) If X ∼ Poi(µ) and a > 0, we have that

E
[
eaX

]
=

∞∑
k=0

eak µk

k! e−µ = e−µ
∞∑

k=0

(eaµ)k

k! = e−µeeaµ = eµ(ea−1).

Using this result and the fact that Nt − Ns ∼ Poi(λ(t − s)) is independent of
Fs, we get

E
[

St

Ss

∣∣∣∣Fs

]
= E

[
e(Nt−Ns) log(1+σ)−λσ(t−s)

∣∣∣Fs

]
= e−λσ(t−s)E

[
e(Nt−Ns) log(1+σ)

]
= e−λσ(t−s)eλ(t−s)(1+σ−1) = 1 P -a.s.
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