Mathematical Foundations for Finance

Exercise sheet 1

Exercise 1.1 Let $\Omega = {\omega_1, \omega_2, \ldots, \omega_N}$ be a finite set and $X : \Omega \to \mathbb{R}$ a mapping which takes the values +5*,* 0 and −5. You can think of *X* as a stock price change over one time period.

- (a) What is the σ -field $\sigma(X)$ generated by X?
- (b) Show that $|X|$ is measurable with respect to $\sigma(X^2)$.
- (c) Let $Y : \Omega \to \mathbb{R}$ be another function. If $\sigma(Y) = 2^{\Omega}$, what can you say about *Y*?

Solution 1.1

(a) We have

$$
\sigma(X) = \sigma (\{X = 5\}, \{X = 0\}, \{X = -5\})
$$

= {0, 0, {X = 5}, {X = 0}, {X = -5},
{X = 5} ∪ {X = 0}, {X = -5} ∪ {X = 0}, {X = -5} ∪ {X = 5}}.

The second equality follows from the fact that the last system of sets is a σ -field and contains a generator of $\sigma(X)$. Thus by definition, they have to be equal.

(b) Since $|X| =$ $\sqrt{X^2}$, |*X*| is a continuous function of X^2 , hence *σ* (*X*²)-measurable. One could also argue by explicitly writing out the σ -field $\sigma(X^2)$ as in a). One gets

$$
\sigma(X^2) = \{ \emptyset, \Omega, \{ X^2 = 25 \}, \{ X^2 = 0 \}, \{ X^2 = 0 \} \cup \{ X^2 = 25 \} \} = \{ \emptyset, \Omega, \{ |X| = 5 \}, \{ |X| = 0 \} \}.
$$

It follows immediately that $|X|$ is $\sigma(X^2)$ -measurable.

(c) Because Ω is finite, *Y* can take at most *N* different values. Therefore *σ*(*Y*) is finite and generated by the sets of the form ${Y = y_i}$ for a finite collection of numbers $y_1, y_2, \ldots, y_n \in \mathbb{R}$, $n \leq N$. The *σ*-field generated by these sets has exactly 2^n elements. The power set 2^{Ω} of Ω has 2^N elements. Hence *Y* must take a different value on each one of the $\omega_1, \omega_2, \ldots, \omega_n$, and so $N = n$. In summary, then, we can say that Y takes a different value on each ω_i , $i = 1, \ldots, N$.

Exercise 1.2 Consider a probability space (Ω, \mathcal{F}, P) . A σ -algebra $\mathcal{F}_0 \subseteq \mathcal{F}$ is said to be *P*-trivial if $P[A] \in \{0, 1\}$ for all $A \in \mathcal{F}_0$. Prove that \mathcal{F}_0 is *P*-trivial if and only if every \mathcal{F}_0 -measurable random variable $X : \Omega \to \mathbb{R}$ is *P*-a.s. constant.

Solution 1.2 Suppose that \mathcal{F}_0 is *P*-trivial, and consider an \mathcal{F}_0 -measurable random variable $X: \Omega \to \mathbb{R}$. By definition we have that $\{X \leqslant a\} \in \mathcal{F}_0$ for all $a \in \mathbb{R}$, and thus $P[X \leqslant a] \in \{0,1\}$. Define

$$
c := \inf\{a \in \mathbb{R} : P[X \leqslant a] = 1\}.
$$

We first prove that $c \in \mathbb{R}$. Since $\{X \leq n\} \uparrow \{X \in \mathbb{R}\}$, then $P[X \leq n] \uparrow P[X \in \mathbb{R}] = 1$, and so the above infimum is over a nonempty set (i.e. $c \neq \infty$). Then, if $c = -\infty$, we have that $P[X \leq -n] = 1$ for all $n \in \mathbb{N}$, and from the fact that $\{X \leq -n\} \downarrow \emptyset$, it follows that $1 = \lim_{n \to \infty} P[X \leq -n] = P[\emptyset] = 0$. We get the desired contradiction.

By the definition of the infimum, we have that $P[X \leqslant c + \frac{1}{n}] = 1$ and $P[X \leqslant c - \frac{1}{n}] = 0$ for all $n \in \mathbb{N}$. Since $\{X \leqslant c + \frac{1}{n}\} \downarrow \{X \leqslant c\}$ and $\{X \leqslant c - \frac{1}{n}\} \uparrow \{X \leqslant c\}$, we get that

$$
P[X \leq c] = \lim_{n \to \infty} P\left[X \leq c + \frac{1}{n}\right] = 1
$$
, and $P[X < c] = \lim_{n \to \infty} P\left[X \leq c - \frac{1}{n}\right] = 0$.

Hence, we conclude that $X = c P$ -a.s. because

$$
P[X = c] = P[X \leq c] - P[X < c] = 1.
$$

Conversely, suppose that every \mathcal{F}_0 -measurable random variable is P -a.s. constant, and take $A \in \mathcal{F}_0$. Then,

$$
1\!\!1_A = \begin{cases} 1 & \text{if } \omega \in A \\ 0 & \text{if } \omega \in A^c \end{cases}
$$

is an \mathcal{F}_0 -measurable random variable, and hence must be P -a.s. constant. It follows immediately that either $P[\mathbb{1}_A = 1] = P[A] = 1$ or $P[\mathbb{1}_A = 0] = P[A^c] = 1$, so that $P[A] \in \{0, 1\}$. This completes the proof.

Exercise 1.3 Let (Ω, \mathcal{F}, P) be a probability space, *X* an integrable random variable and $\mathcal{G} \subseteq \mathcal{F}$ a *σ*-algebra. Then, the *P*-a.s. unique random variable *Z* such that

- *Z* is *G*-measurable and integrable,
- $E[X1_A] = E[Z1_A]$ for all $A \in \mathcal{G}$,

is called the *conditional expectation of X given* \mathcal{G} and is denoted by $E[X|\mathcal{G}]$. [*This is the formal definition of the conditional expectation of X given* G*; see Section 8.2 in the lecture notes.*]

- (a) Show that if *X* is *G*-measurable, then $E[X|\mathcal{G}] = X P$ -a.s.
- (b) Show that $E [E [X | \mathcal{G}]] = E [X].$
- (c) Show that if $P[A] \in \{0,1\}$ for all $A \in \mathcal{G}$ (that is, if \mathcal{G} is *P*-trivial), then $E[X|\mathcal{G}] = E[X]$ *P*-a.s.
- (d) Consider an integrable random variable *Y* on (Ω, \mathcal{F}, P) , and some constants $a, b \in \mathbb{R}$. Show that $E[aX + bY | \mathcal{G}] = aE[X | \mathcal{G}] + bE[Y | \mathcal{G}]$ *P*-a.s.
- (e) Suppose that G is generated by a finite partition of Ω , i.e., there exists a collection $(A_i)_{i=1,\dots,n}$ of sets $A_i \in \mathcal{F}$ such that $\bigcup_{i=1}^n A_i = \Omega$, $A_i \cap A_j = \emptyset$ for $i \neq j$ and $\mathcal{G} = \sigma(A_1, \ldots, A_n)$. Additionally, assume that $P[A_i] > 0$ for all $i = 1, \ldots, n$. Show that

$$
E[X | \mathcal{G}] = \sum_{i=1}^{n} E[X | A_i] \, \mathbb{1}_{A_i} \, P\text{-a.s.}
$$

This says that the conditional expectation of a random variable given a finitely generated *σ*algebra is a *piecewise constant* function with the constants given by the elementary conditional expectations given the sets of the generating partition.

[*This is a very useful property when one conditions on a finitely generated σ-algebra, as for instance in the multinomial model.*]

Hint 1: Recall that $E[X|A_i] = E[X1_{A_i}]/P[A_i]$ *and try to write X as a sum of random variables each of which only takes non-zero values on a single Ai.*

Hint 2: Check that any set $A \in \mathcal{G}$ *has the form* $\cup_{j \in J} A_j$ *for some* $J \subseteq \{1, \ldots, n\}$ *.*

Solution 1.3

- (a) *X* is G-measurable and integrable by assumption, so the first requirement in the definition of conditional expectation is satisfied for $Z = X$. Moreover, we clearly have that $E[X1_A] =$ $E[X1_A]$ for all $A \in \mathcal{G}$, hence $E[X|\mathcal{G}] = X$ *P*-a.s.
- (b) In the definition of the conditional expectation, set $A = \Omega$. Then, we obtain that $E [E [X | \mathcal{G}]] =$ $E[E[X|\mathcal{G}]\mathbb{1}_{\Omega}] = E[X\mathbb{1}_{\Omega}] = E[X].$
- (c) Since $|E[X]| \le E[|X|]$ by Jensen's inequality and $E[|X|] < \infty$ by the assumption that X is integrable, we have that $E[X]$ is integrable as well. $E[X]$ is also trivially \mathcal{G} -measurable since it is a constant random variable. Moreover, in this setting, $A \in \mathcal{G}$ only if $P[A] = 0$ or $P[A] = 1$. Noting that

$$
E[X1_A] = 0 = E[E[X]1_A], \qquad \forall A \in \mathcal{G} \text{ such that } P[A] = 0,
$$

$$
E[X1_A] = E[X] = E[E[X]1_A], \quad \forall A \in \mathcal{G} \text{ such that } P[A] = 1,
$$

we obtain $E[X|\mathcal{G}] = E[X]$ *P*-a.s.

(d) By the definition of the conditional expectation, we have that $E[X|\mathcal{G}]$ and $E[Y|\mathcal{G}]$ are G-measurable and integrable; hence, the same holds for $aE[X|\mathcal{G}] + bE[Y|\mathcal{G}]$. Choosing some $A \in \mathcal{G}$, we can compute that

$$
E[(aE[X | \mathcal{G}] + bE[Y | \mathcal{G}])\mathbb{1}_A] = aE[E[X | \mathcal{G}] \mathbb{1}_A] + bE[E[Y | \mathcal{G}] \mathbb{1}_A] = aE[X\mathbb{1}_A] + bE[Y\mathbb{1}_A] = E[(aX + bY)\mathbb{1}_A],
$$

where the first equality uses the linearity of the (classical) expectation and the second uses the definition of $E[X|\mathcal{G}]$ and $E[Y|\mathcal{G}]$. By the arbitrariness of $A \in \mathcal{G}$, we can conclude that $E[aX + bY | \mathcal{G}] = aE[X | \mathcal{G}] + bE[Y | \mathcal{G}]$ *P*-a.s.

(e) First recall that $E[X | A_i] = E[X \mathbb{1}_{A_i}]/P[A_i]$. Using that

$$
X = X \mathbb{1}_{\Omega} = X \mathbb{1}_{\cup_{i=1}^{n} A_i} = X \sum_{i=1}^{n} \mathbb{1}_{A_i} = \sum_{i=1}^{n} X \mathbb{1}_{A_i},
$$

where the third equality holds because A_i are pairwise disjoint, we get by part (d) that

$$
E[X | \mathcal{G}] = \sum_{i=1}^{n} E[X \mathbb{1}_{A_i} | \mathcal{G}] \ P\text{-a.s.},
$$

and hence we only have to show that $E[X1_{A_i} | \mathcal{G}] = \frac{E[X1_{A_i}]}{P[A_i]}$ $\frac{P[X|A_i]}{P[A_i]} \mathbb{1}_{A_i}$ *P*-a.s. for each $i \in \{1, ..., n\}.$ Since $A_i \in \mathcal{G}$ and $E[X|A_i] = E[X\mathbb{1}_{A_i}]/P[A_i] \in \mathbb{R}$, we already know that $E[X|A_i] \mathbb{1}_{A_i}$ is G-measurable and integrable. One can verify that the family of sets $A = \bigcup_{j \in J} A_j$ for $J \in 2^{\{1,\ldots,n\}}$ (the power set of $\{1,\ldots,n\}$) forms a *σ*-field. Let us denote this *σ*-field by \tilde{G} . Since we clearly have $A_i \in \tilde{\mathcal{G}}$ for all $i \in \{1, \ldots, n\}$, we get that $\tilde{\mathcal{G}} \supseteq \mathcal{G}$, which for any $A \in \mathcal{G}$ implies that $A = \bigcup_{j \in J} A_j$ for some $J \subseteq \{1, \ldots, n\}$. For any such $A \in \mathcal{G}$, we have that

$$
\mathbb{1}_{A_i} \mathbb{1}_A = \begin{cases} \mathbb{1}_{A_i} & \text{if } i \in J, \\ 0 & \text{else.} \end{cases}
$$

Hence, we can then compute

$$
E\left[\left(\frac{E\left[X\mathbb{1}_{A_i}\right]}{P[A_i]}\mathbb{1}_{A_i}\right)\mathbb{1}_A\right] = \begin{cases} E\left[X\mathbb{1}_{A_i}\right] \frac{P[A_i]}{P[A_i]} = E\left[X\mathbb{1}_{A_i}\right] & \text{if } i \in J, \\ 0 & \text{else.} \end{cases}
$$

$$
E\left[X\mathbb{1}_{A_i}\mathbb{1}_A\right] = \begin{cases} E\left[X\mathbb{1}_{A_i}\right] & \text{if } i \in J, \\ 0 & \text{else.} \end{cases}
$$

This shows that $E[X1_{A_i}|\mathcal{G}] = \frac{E[X1_{A_i}]}{P[A_i]}$ $\frac{[X\mathbb{1}_{A_i}]}{P[A_i]}$ **1**_{A_i} *P*-a.s. and concludes the proof.

Exercise 1.4 Consider a financial market $(\tilde{S}^0, \tilde{S}^1)$ given by the following trees, where the numbers beside the branches denote transition probabilities:

Intuitively, this means that the volatility of \tilde{S}^1 increases after a stock price increase in the first period. Assume that $u, r \geq 0$ and $-0.5 < d \leq 0$.

- (a) Construct for this setup a multiplicative model consisting of a probability space (Ω, \mathcal{F}, P) , a filtration $\mathbb{F} = (\mathcal{F}_k)_{k=0,1,2}$, two random variables Y_1 and Y_2 and two adapted stochastic processes \tilde{S}^0 and \tilde{S}^1 such that $\tilde{S}_k^1 = \prod_{j=1}^k Y_j$ for $k = 0, 1, 2$.
- (b) For which values of *u* and *d* are *Y*¹ and *Y*² *uncorrelated*?
- (c) For which values of *u* and *d* are *Y*¹ and *Y*² *independent*?
- (d) For which values of *u*, *r* and *d* is the discounted stock process S^1 a *P*-martingale?

Solution 1.4

(a) We construct the canonical model for this setup, a path space. Let $\Omega := \{-1, 1\}^2$, take $\mathcal{F}:=2^{\Omega}$ and define P by

$$
P\left[\{(x_1,x_2)\}\right] := p_{x_1}p_{x_1,x_2},
$$

where $p_1 = p_{-1} := 1/2$ and $p_{1,1} = p_{1,-1} = p_{-1,1} = p_{-1,-1} := 1/2$. Next, define Y_1 and *Y*₂ by $Y_1((1,1)) = Y_1((1,-1)) := 1 + u$, $Y_1((-1,1)) = Y_1((-1,-1)) := 1 + d$ and $Y_2((1,1)) := 1 + 2u$, $Y_2((1,-1)) := 1 + 2d$, $Y_2((-1,1)) := 1 + u$, $Y_2((-1,-1)) := 1 + d$. Finally, define \tilde{S}^0 and \tilde{S}^1 by $\tilde{S}_k^0 := (1+r)^k$ and $\tilde{S}_k^1 := \prod_{j=1}^k Y_j$ for $k = 0, 1, 2$ and set $\mathcal{F}_0 := \{\emptyset, \Omega\},$ $\mathcal{F}_1 := \sigma(Y_1) = \{\emptyset, \{(1,1), (1,-1)\}, \{(-1,1), (-1,-1)\}, \Omega\} \text{ and } \mathcal{F}_2 := \sigma(Y_1, Y_2) = 2^{\Omega} = \mathcal{F}.$

(b) Y_1 and Y_2 are uncorrelated if and only if $E[Y_1Y_2] = E[Y_1]E[Y_2]$. Set $c := (u+d)/2$ to simplify the notation. Then we have

$$
E[Y_1] = 1 + c \text{ and } E[Y_2] = 1 + \frac{3}{2}c,
$$

\n
$$
E[Y_1Y_2] = \frac{1+u}{2}(1+2c) + \frac{1+d}{2}(1+c) = (1+c)^2 + \frac{1+u}{2}c.
$$

Hence, we have

$$
E[Y_1Y_2] - E[Y_1]E[Y_2] = (1+c)^2 + \frac{1+u}{2}c - ((1+c)^2 + (1+c)\frac{c}{2})
$$

= $(u-c)\frac{c}{2}$.

Since $d \leq 0 \leq u$, we have

$$
(u-c)\frac{c}{2} = 0 \Leftrightarrow c = 0 \text{ or } u-c = 0 \Leftrightarrow d = -u.
$$

In conclusion, Y_1 and Y_2 are uncorrelated if and only if $d = -u$.

(c) Since independent random variables are a fortiori uncorrelated, we only have to consider the case that $u = -d$. If $u = d = 0$, Y_1 and Y_2 are both constant and hence independent. Otherwise, if $u > 0$ we have on the one hand

$$
P[Y_1 = 1 + u, Y_2 = 1 + u] = 0
$$

and on the other hand

$$
P[Y_1 = 1 + u] P[Y_2 = 1 + u] = 1/2 \cdot 1/4 = 1/8 \neq 0,
$$

showing that in this case Y_1 and Y_2 are not independent. In conclusion, Y_1 and Y_2 are independent if and only if $u = d = 0$.

Note: If $d = -u$ and $u \neq 0$, then Y_1 and Y_2 are uncorrelated but **not** independent.

(d) S^1 is a *P*-martingale if and only if

$$
E[S_1^1 | \mathcal{F}_0] = S_0^1
$$
 P-a.s. and $E[S_2^1 | \mathcal{F}_1] = S_1^1$ P-a.s. (1)

If $u = d = 0$, it is straightforward to check that S^1 is a *P*-martingale if and only if $r = 0$. Next, assume that $u > d$. Since \mathcal{F}_0 is trivial, $\mathcal{F}_1 = \sigma(Y_1)$ and $Y_1 > 0$, [\(1\)](#page-4-1) is equivalent to

$$
E[Y_1] = 1 + r
$$
 and $E[Y_2|Y_1] = 1 + r$ P-a.s.

Since Y_1 only takes two values, this is equivalent to

$$
E[Y_1] = 1 + r
$$
 and $E[Y_2 | Y_1 = 1 + u] = 1 + r$ and $E[Y_2 | Y_1 = 1 + d] = 1 + r$.

This is equivalent to

$$
1 + (u + d)/2 = 1 + r,
$$

\n
$$
1 + u + d = 1 + r,
$$

\n
$$
1 + (u + d)/2 = 1 + r.
$$

Subtracting the first from the second equation yields $(u + d)/2 = 0$, which in turn implies $r = 0$. In conclusion, S^1 is a *P*-martingale if and only if $r = 0$ and $d = -u$.