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Exercise 1.1 Let Ω = {ω1, ω2, . . . , ωN } be a finite set and X : Ω → R a mapping which takes the
values +5, 0 and −5. You can think of X as a stock price change over one time period.

(a) What is the σ-field σ(X) generated by X?

(b) Show that |X| is measurable with respect to σ
(
X2)

.

(c) Let Y : Ω → R be another function. If σ(Y ) = 2Ω, what can you say about Y ?

Solution 1.1

(a) We have

σ(X) = σ ({X = 5}, {X = 0}, {X = −5})
=

{
∅, Ω, {X = 5}, {X = 0}, {X = −5},

{X = 5} ∪ {X = 0}, {X = −5} ∪ {X = 0}, {X = −5} ∪ {X = 5}
}

.

The second equality follows from the fact that the last system of sets is a σ-field and contains
a generator of σ(X). Thus by definition, they have to be equal.

(b) Since |X| =
√

X2, |X| is a continuous function of X2, hence σ
(
X2)

-measurable. One could
also argue by explicitly writing out the σ-field σ

(
X2)

as in a). One gets

σ
(
X2)

=
{

∅, Ω, {X2 = 25}, {X2 = 0}, {X2 = 0} ∪ {X2 = 25}
}

= {∅, Ω, {|X| = 5}, {|X| = 0}} .

It follows immediately that |X| is σ
(
X2)

-measurable.

(c) Because Ω is finite, Y can take at most N different values. Therefore σ(Y ) is finite and
generated by the sets of the form {Y = yi} for a finite collection of numbers y1, y2, . . . , yn ∈ R,
n ≤ N . The σ-field generated by these sets has exactly 2n elements. The power set 2Ω of
Ω has 2N elements. Hence Y must take a different value on each one of the ω1, ω2, . . . , ωn,
and so N = n. In summary, then, we can say that Y takes a different value on each ωi,
i = 1, . . . , N .

Exercise 1.2 Consider a probability space (Ω, F , P ). A σ-algebra F0 ⊆ F is said to be P -trivial if
P [A] ∈ {0, 1} for all A ∈ F0. Prove that F0 is P -trivial if and only if every F0-measurable random
variable X : Ω → R is P -a.s. constant.

Solution 1.2 Suppose that F0 is P -trivial, and consider an F0-measurable random variable
X : Ω → R. By definition we have that {X ⩽ a} ∈ F0 for all a ∈ R, and thus P [X ⩽ a] ∈ {0, 1}.
Define

c := inf{a ∈ R : P [X ⩽ a] = 1}.

We first prove that c ∈ R. Since {X ⩽ n} ↑ {X ∈ R}, then P [X ⩽ n] ↑ P [X ∈ R] = 1,
and so the above infimum is over a nonempty set (i.e. c ̸= ∞). Then, if c = −∞, we have

Updated: September 26, 2024 1 / 5



Mathematical Foundations for Finance, Fall 2024 Exercise sheet 1

that P [X ⩽ −n] = 1 for all n ∈ N, and from the fact that {X ⩽ −n} ↓ ∅, it follows that
1 = limn→∞ P [X ⩽ −n] = P [∅] = 0. We get the desired contradiction.
By the definition of the infimum, we have that P [X ⩽ c + 1

n ] = 1 and P [X ⩽ c − 1
n ] = 0 for all

n ∈ N. Since {X ⩽ c + 1
n } ↓ {X ⩽ c} and {X ⩽ c − 1

n } ↑ {X < c}, we get that

P [X ⩽ c] = lim
n→∞

P

[
X ⩽ c + 1

n

]
= 1, and P [X < c] = lim

n→∞
P

[
X ⩽ c − 1

n

]
= 0.

Hence, we conclude that X = c P -a.s. because

P [X = c] = P [X ⩽ c] − P [X < c] = 1.

Conversely, suppose that every F0-measurable random variable is P -a.s. constant, and take
A ∈ F0. Then,

1A =
{

1 if ω ∈ A

0 if ω ∈ Ac

is an F0-measurable random variable, and hence must be P -a.s. constant. It follows immediately
that either P [1A = 1] = P [A] = 1 or P [1A = 0] = P [Ac] = 1, so that P [A] ∈ {0, 1}. This completes
the proof.

Exercise 1.3 Let (Ω, F , P ) be a probability space, X an integrable random variable and G ⊆ F a
σ-algebra. Then, the P -a.s. unique random variable Z such that

• Z is G-measurable and integrable,

• E [X1A] = E[Z1A] for all A ∈ G,

is called the conditional expectation of X given G and is denoted by E [X |G].
[This is the formal definition of the conditional expectation of X given G; see Section 8.2 in the
lecture notes.]

(a) Show that if X is G-measurable, then E [X |G] = X P -a.s.

(b) Show that E [E [X |G]] = E [X].

(c) Show that if P [A] ∈ {0, 1} for all A ∈ G (that is, if G is P -trivial), then E [X |G] = E [X]
P -a.s.

(d) Consider an integrable random variable Y on (Ω, F , P ), and some constants a, b ∈ R. Show
that E [aX + bY |G] = aE [X |G] + bE [Y |G] P -a.s.

(e) Suppose that G is generated by a finite partition of Ω, i.e., there exists a collection (Ai)i=1,...,n

of sets Ai ∈ F such that
⋃n

i=1 Ai = Ω, Ai ∩ Aj = ∅ for i ̸= j and G = σ(A1, . . . , An).
Additionally, assume that P [Ai] > 0 for all i = 1, . . . , n. Show that

E [X |G] =
n∑

i=1
E [X |Ai]1Ai

P -a.s.

This says that the conditional expectation of a random variable given a finitely generated σ-
algebra is a piecewise constant function with the constants given by the elementary conditional
expectations given the sets of the generating partition.
[This is a very useful property when one conditions on a finitely generated σ-algebra, as for
instance in the multinomial model.]
Hint 1: Recall that E [X |Ai] = E [X1Ai ] /P [Ai] and try to write X as a sum of random
variables each of which only takes non-zero values on a single Ai.
Hint 2: Check that any set A ∈ G has the form ∪j∈JAj for some J ⊆ {1, . . . , n}.
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Solution 1.3

(a) X is G-measurable and integrable by assumption, so the first requirement in the definition of
conditional expectation is satisfied for Z = X. Moreover, we clearly have that E [X1A] =
E [X1A] for all A ∈ G, hence E [X |G] = X P -a.s.

(b) In the definition of the conditional expectation, set A = Ω. Then, we obtain that E [E [X |G]] =
E [E [X |G]1Ω] = E [X1Ω] = E [X].

(c) Since |E [X] | ≤ E [|X|] by Jensen’s inequality and E [|X|] < ∞ by the assumption that X
is integrable, we have that E [X] is integrable as well. E [X] is also trivially G-measurable
since it is a constant random variable. Moreover, in this setting, A ∈ G only if P [A] = 0 or
P [A] = 1. Noting that

E [X1A] = 0 = E [E [X]1A] , ∀A ∈ G such that P [A] = 0,

E [X1A] = E [X] = E [E [X]1A] , ∀A ∈ G such that P [A] = 1,

we obtain E [X |G] = E [X] P -a.s.

(d) By the definition of the conditional expectation, we have that E [X |G] and E [Y |G] are
G-measurable and integrable; hence, the same holds for aE [X |G] + bE [Y |G]. Choosing some
A ∈ G, we can compute that

E
[
(aE [X |G] + bE [Y |G])1A

]
= aE

[
E [X |G]1A

]
+ bE

[
E [Y |G]1A

]
= aE [X1A] + bE [Y 1A] = E [(aX + bY )1A] ,

where the first equality uses the linearity of the (classical) expectation and the second uses
the definition of E [X |G] and E [Y |G]. By the arbitrariness of A ∈ G, we can conclude that
E [aX + bY |G] = aE [X |G] + bE [Y |G] P -a.s.

(e) First recall that E [X |Ai] = E [X1Ai
] /P [Ai]. Using that

X = X1Ω = X1∪n
i=1Ai

= X

n∑
i=1

1Ai
=

n∑
i=1

X1Ai
,

where the third equality holds because Ai are pairwise disjoint, we get by part (d) that

E [X |G] =
n∑

i=1
E [X1Ai

|G] P -a.s.,

and hence we only have to show that E [X1Ai |G] = E[X1Ai
]

P [Ai] 1Ai P -a.s. for each i ∈ {1, . . . , n}.
Since Ai ∈ G and E [X |Ai] = E[X1Ai

]/P [Ai] ∈ R, we already know that E [X |Ai]1Ai

is G-measurable and integrable. One can verify that the family of sets A =
⋃

j∈J Aj for
J ∈ 2{1,...,n} (the power set of {1, . . . , n}) forms a σ-field. Let us denote this σ-field by G̃.
Since we clearly have Ai ∈ G̃ for all i ∈ {1, . . . , n}, we get that G̃ ⊇ G, which for any A ∈ G
implies that A =

⋃
j∈J Aj for some J ⊆ {1, . . . , n}. For any such A ∈ G, we have that

1Ai1A =
{
1Ai

if i ∈ J ,
0 else.

Hence, we can then compute

E

[(
E [X1Ai

]
P [Ai]

1Ai

)
1A

]
=

{
E [X1Ai ]

P [Ai]
P [Ai] = E [X1Ai ] if i ∈ J ,

0 else.
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On the other hand, we have that

E [X1Ai
1A] =

{
E [X1Ai

] if i ∈ J ,
0 else.

This shows that E [X1Ai
|G] = E[X1Ai

]
P [Ai] 1Ai

P -a.s. and concludes the proof.

Exercise 1.4 Consider a financial market (S̃0, S̃1) given by the following trees, where the numbers
beside the branches denote transition probabilities:

1 + r (1 + r)(1 + r)
1 1

S̃0 : 1

S̃1 : 1

1 + d

1 + u

(1 + u)(1 + 2u)

(1 + u)(1 + 2d)

(1 + d)(1 + u)

(1 + d)(1 + d)

1
2

1
2

1
2

1
2

1
2

1
2

Intuitively, this means that the volatility of S̃1 increases after a stock price increase in the first
period. Assume that u, r ≥ 0 and −0.5 < d ≤ 0.

(a) Construct for this setup a multiplicative model consisting of a probability space (Ω, F , P ),
a filtration F = (Fk)k=0,1,2, two random variables Y1 and Y2 and two adapted stochastic
processes S̃0 and S̃1 such that S̃1

k =
∏k

j=1 Yj for k = 0, 1, 2.

(b) For which values of u and d are Y1 and Y2 uncorrelated?

(c) For which values of u and d are Y1 and Y2 independent?

(d) For which values of u, r and d is the discounted stock process S1 a P -martingale?

Solution 1.4

(a) We construct the canonical model for this setup, a path space. Let Ω := {−1, 1}2, take
F := 2Ω and define P by

P [{(x1, x2)}] := px1px1,x2 ,

where p1 = p−1 := 1/2 and p1,1 = p1,−1 = p−1,1 = p−1,−1 := 1/2. Next, define Y1
and Y2 by Y1((1, 1)) = Y1((1, −1)) := 1 + u, Y1((−1, 1)) = Y1((−1, −1)) := 1 + d and
Y2((1, 1)) := 1 + 2u, Y2((1, −1)) := 1 + 2d, Y2((−1, 1)) := 1 + u, Y2((−1, −1)) := 1 + d. Finally,
define S̃0 and S̃1 by S̃0

k := (1 + r)k and S̃1
k :=

∏k
j=1 Yj for k = 0, 1, 2 and set F0 := {∅, Ω},

F1 := σ(Y1) = {∅, {(1, 1), (1, −1)}, {(−1, 1), (−1, −1)}, Ω} and F2 := σ(Y1, Y2) = 2Ω = F .

(b) Y1 and Y2 are uncorrelated if and only if E [Y1Y2] = E [Y1] E [Y2]. Set c := (u + d)/2 to
simplify the notation. Then we have

E [Y1] = 1 + c and E [Y2] = 1 + 3
2c ,

E [Y1Y2] = 1 + u

2 (1 + 2c) + 1 + d

2 (1 + c) = (1 + c)2 + 1 + u

2 c .

Updated: September 26, 2024 4 / 5



Mathematical Foundations for Finance, Fall 2024 Exercise sheet 1

Hence, we have

E [Y1Y2] − E [Y1] E [Y2] = (1 + c)2 + 1 + u

2 c −
(

(1 + c)2 + (1 + c) c

2

)
= (u − c) c

2 .

Since d ≤ 0 ≤ u, we have

(u − c) c

2 = 0 ⇔ c = 0 or u − c = 0 ⇔ d = −u .

In conclusion, Y1 and Y2 are uncorrelated if and only if d = −u.

(c) Since independent random variables are a fortiori uncorrelated, we only have to consider
the case that u = −d. If u = d = 0, Y1 and Y2 are both constant and hence independent.
Otherwise, if u > 0 we have on the one hand

P [Y1 = 1 + u, Y2 = 1 + u] = 0

and on the other hand

P [Y1 = 1 + u] P [Y2 = 1 + u] = 1/2 · 1/4 = 1/8 ̸= 0 ,

showing that in this case Y1 and Y2 are not independent. In conclusion, Y1 and Y2 are
independent if and only if u = d = 0.
Note: If d = −u and u ̸= 0, then Y1 and Y2 are uncorrelated but not independent.

(d) S1 is a P -martingale if and only if

E
[
S1

1
∣∣F0

]
= S1

0 P -a.s. and E
[
S1

2
∣∣F1

]
= S1

1 P -a.s. (1)

If u = d = 0, it is straightforward to check that S1 is a P -martingale if and only if r = 0.
Next, assume that u > d. Since F0 is trivial, F1 = σ(Y1) and Y1 > 0, (1) is equivalent to

E [Y1] = 1 + r and E [Y2 |Y1] = 1 + r P -a.s.

Since Y1 only takes two values, this is equivalent to

E [Y1] = 1 + r and E [Y2 |Y1 = 1 + u] = 1 + r and E [Y2 |Y1 = 1 + d] = 1 + r .

This is equivalent to

1 + (u + d)/2 = 1 + r ,

1 + u + d = 1 + r ,

1 + (u + d)/2 = 1 + r .

Subtracting the first from the second equation yields (u + d)/2 = 0, which in turn implies
r = 0. In conclusion, S1 is a P -martingale if and only if r = 0 and d = −u.
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