Mathematical Foundations for Finance Exercise Sheet 2

Please hand in your solutions by 12:00 on Wednesday, October 9 via the [course](https://metaphor.ethz.ch/x/2024/hs/401-3913-01L/) [homepage.](https://metaphor.ethz.ch/x/2024/hs/401-3913-01L/)

Exercise 2.1 Consider a probability space (Ω, \mathcal{F}, P) . Fix a finite time horizon $T \in \mathbb{N}$, and let $r_1, \ldots, r_T > -1$ and $Y_1, \ldots, Y_T > 0$ be random variables. For $k = 0, \ldots, T$, define

$$
\widetilde{S}_k^0 := \prod_{j=1}^k (1+r_j), \qquad \widetilde{S}_k^1 := S_0^1 \prod_{j=1}^k Y_j,
$$

where $S_0^1 > 0$ is some constant.

(a) Consider the filtration $\mathbb{F}' = (\mathcal{F}'_k)_{k=0,\dots,T}$ generated by $Y = (Y_k)_{k=1,\dots,T}$ and $r = (r_k)_{k=1,...,T}$, so that

$$
\mathcal{F}'_0 = \{ \varnothing, \Omega \},
$$

\n
$$
\mathcal{F}'_k = \sigma(Y_1, \ldots, Y_k, r_1, \ldots, r_k), \quad k = 1, \ldots, T.
$$

Show that if *r* is \mathbb{F}' -predictable, then $\mathcal{F}'_k = \mathcal{F}_k := \sigma(\tilde{S}_0^1, \tilde{S}_1^1, \ldots, \tilde{S}_k^1)$ for all $k = 0, \ldots, T$.

(b) Recall that a strategy $\varphi = (\varphi^0, \vartheta)$ is *self-financing* if its discounted cost process $C(\varphi)$ is constant over time. Show that the notion of self-financing does not depend on discounting. That is, if $D = (D_k)_{k=0,\dots,T}$ is any positive adapted process and $\bar{S}_k^i := S_k^i D_k$ for each $k = 0, \ldots, T$ and $i = 0, 1$, then the discounted cost process $C(\varphi)$ is constant over time if and only if the undiscounted cost process $C(\varphi)$, determined by

$$
\Delta \bar{C}_{k+1}(\varphi) := (\varphi^0_{k+1} - \varphi^0_k)\bar{S}^0_k + (\vartheta_{k+1} - \vartheta_k)\bar{S}^1_k,
$$

is constant over time.

(c) Show that the notion of self-financing is numéraire-invariant, i.e. it does not matter if the discounted price processes are defined as $S^0 := \tilde{S}^0/\tilde{S}^0$ and $S^1 := \tilde{S}^1 / \tilde{S}^0$, or $\bar{S}^0 := \tilde{S}^0 / \tilde{S}^1$ and $\bar{S}^1 := \tilde{S}^1 / \tilde{S}^1$.

Exercise 2.2 Consider a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, and let $\tau, \sigma : \Omega \to$ $\mathbb{N} \cup \{\infty\}$ be stopping times.

- (a) Show that $\tau \wedge \sigma := \min\{\tau, \sigma\}$ is a stopping time.
- (b) Show that $\tau \vee \sigma := \max{\lbrace \tau, \sigma \rbrace}$ is a stopping time.
- (c) Show that a function $\rho : \Omega \to \mathbb{N} \cup {\infty}$ is an F-stopping time if and only if $\{\rho = k\} \in \mathcal{F}_k$ for all $k \in \mathbb{N}$.
- (d) Show that $\tau + \sigma$ is a stopping time.
- (e) Suppose $\tau \geq \sigma$. Is $\tau \sigma$ a stopping time?
- (f) Suppose that $X = (X_k)_{k \in \mathbb{N}}$ is an adapted \mathbb{R}^d -valued process, and let $a \in \mathbb{R}$. Show that

$$
\rho := \inf\{k : |X_k| \geqslant a\}
$$

is a stopping time.

Show that ρ is still a stopping time if " \geq " is replaced by any of " $>$ ", " \leq " or " \lt ".

Exercise 2.3 Fix a probability space (Ω, \mathcal{F}, P) and a finite time horizon $T \geq 2$. Consider a market (S^0, S^1) consisting of a bank account and a stock, respectively. Assume that $S^0 \equiv 1$, $S_0^1 = 1$ and $S_k^1 > 0$ for all $k = 1, ..., T$. Fix $0 < \ell < 1 < u$, and define the maps $\tau, \sigma : \Omega \to \mathbb{N} \cup \{\infty\}$ by

$$
\tau(\omega) := \inf\{k = 0, \dots, T : S_k^1(\omega) \leq \ell\} \wedge T,
$$

$$
\sigma(\omega) := \inf\{k = \tau(\omega), \dots, T : S_k^1(\omega) \geq u\} \wedge T.
$$

We use here the standard convention inf $\varnothing = +\infty$.

- (a) Define the filtration $\mathbb{F} = (\mathcal{F}_k)_{k=0,\dots,T}$ on (Ω, \mathcal{F}) by $\mathcal{F}_k := \sigma(S_i^1 : 0 \leq i \leq k)$. Show that τ and σ are F-stopping times.
- (b) Define the process $\vartheta = (\vartheta_k)_{k=1,\dots,T}$ by

$$
\vartheta_k := \mathbb{1}_{\{\tau < k \leqslant \sigma\}}, \ k = 1, \dots, T.
$$

Show that ϑ is **F**-predictable and $\vartheta_1 = 0$.

- (c) Construct φ^0 such that the strategy $\varphi = (\varphi^0, \vartheta)$ is self-financing with $V_0(\varphi) = 0$, and derive a formula for the discounted value process $V(\varphi)$ involving only the discounted stock price S^1 and the stopping times τ and σ .
- (d) Describe the trading strategy φ in words.

Exercise 2.4 Let $(\tilde{S}^0, \tilde{S}^1)$ be a *binomial model*. More precisely, the price processes of the assets are defined by

$$
\begin{aligned}\n\widetilde{S}_k^0 &= (1+r)^k \quad \text{for } k = 0, 1, \dots, T, \\
\frac{\widetilde{S}_{k+1}^1}{\widetilde{S}_k^1} &= Y_{k+1} \quad \text{for } k = 0, 1, \dots, T-1,\n\end{aligned}
$$

where the Y_k are i.i.d., taking values $1 + u$ with probability $p \in (0, 1)$ and $1 + d$ with probability $1 - p$. Assume furthermore that $u > d > -1$ and $r > -1$.

- (a) Suppose that $r \leq d$. Show that in this case the market $(\tilde{S}^0, \tilde{S}^1)$ admits *arbitrage* by explicitly constructing an *arbitrage opportunity*.
- (b) Suppose that $r \geq u$. Show that also in this case the market $(\tilde{S}^0, \tilde{S}^1)$ admits *arbitrage* by explicitly constructing an *arbitrage opportunity*.