Mathematical Foundations for Finance Exercise Sheet 3

Please hand in your solutions by 12:00 on Wednesday, October 16 via the [course](https://metaphor.ethz.ch/x/2024/hs/401-3913-01L/) [homepage.](https://metaphor.ethz.ch/x/2024/hs/401-3913-01L/)

Exercise 3.1 Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space endowed with the filtration $\mathbb{F} = (\mathcal{F}_k)_{k=0}^T$ with \mathcal{F}_0 trivial. Let $X = (X_k)_{k=0}^T$ be a supermartingale. Show that $X_0 \geq E[X_T]$ always, and that we have $X_0 = E[X_T]$ if and only if X is a martingale.

Exercise 3.2 Consider a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F} = (\mathcal{F}_k)_{k \in \mathbb{N}_0}$.

(a) Let *X* be a martingale. Show that for any bounded and convex function *f* : $\mathbb{R} \to \mathbb{R}$, the process $f(X) = (f(X_k))_{k \in \mathbb{N}_0}$ is a submartingale.

Could we replace the request of *f* being bounded with a more general condition?

Hint: You may use that finite-valued convex functions are continuous.

(b) Let *X* be a submartingale, and let $\theta = (\theta_k)_{k \in \mathbb{N}_0}$ be a bounded, nonnegative and predictable process. Show that the stochastic integral process $\vartheta \bullet X$, defined by

$$
\vartheta \bullet X_k = \sum_{j=1}^k \vartheta_j \Delta X_j = \sum_{j=1}^k \vartheta_j (X_j - X_{j-1}),
$$

is a submartingale.

Conclude that $E[\vartheta \bullet X_k] \geq 0$ for all $k \in \mathbb{N}_0$.

(c) Let X be a submartingale and let τ be a stopping time. Show that the stopped process $X^{\tau} = (X^{\tau}_k)_{k \in \mathbb{N}_0}$ defined by $X^{\tau}_k = X_{k \wedge \tau}$ is a submartingale.

Exercise 3.3 Let $(\tilde{S}^0, \tilde{S}^1)$ be a *trinomial model*. This is like a binomial model a special case of a *multinomial model*, and the distribution of Y_k under P is given by

$$
Y_k = \begin{cases} 1+d & \text{with probability } p_1 \\ 1+m & \text{with probability } p_2 \\ 1+u & \text{with probability } p_3 \end{cases}
$$

where $p_1, p_2, p_3 > 0, p_1 + p_2 + p_3 = 1$ and $-1 < d < m < u$. Here *d*, *m* and *u* are mnemonics for *down*, *middle* and *up*.

Updated: October 10, [2](#page-1-0)024 $1/2$

(a) Assume that *d* = −0*.*5, *m* = 0, *u* = 0*.*25 and *r* = 0. For *T* = 1, consider an arbitrary self-financing strategy $\varphi \cong (V_0, \theta)$. Show that if the total gain $G_1(\theta)$ at time $T = 1$ is nonnegative P -a.s., then

$$
P[G_1(\theta) = 0] = 1.
$$

What does this property imply?

(b) Show that S^1 is arbitrage-free by constructing an *equivalent martingale measure* (EMM) for S^1 .

Hint: A probability measure Q equivalent to P on \mathcal{F}_1 can be uniquely described by a *probability vector* $(q_1, q_2, q_3) \in (0, 1)^3$, where $q_k = Q[Y_1 = 1 + y_k]$, $k = 1$, 2, 3, using the notation $y_1 := d$, $y_2 := m$ and $y_3 := u$. (A *probability vector in* \mathbb{R}^n , $n \in \mathbb{N}$ *is a nonnegative vector in* \mathbb{R}^n *whose coordinates sum up to 1.*)

(c) Assume now that $d = -0.01$, $m = 0.01$, $u = 0.03$ and $r = 0.01$. For $T = 2$, give a parametrisation of all *equivalent martingale measures* (EMMs) for *S* 1 .

Hint: A probability measure Q equivalent to P on \mathcal{F}_2 can be uniquely described by four *probability vectors* $(q_1, q_2, q_3), (q_{j,1}, q_{j,2}, q_{j,3}) \in (0, 1)^3, j = 1, 2, 3$, where $q_j = Q[Y_1 = 1 + y_j]$ and $q_{j,k} = Q[Y_2 = 1 + y_k | Y_1 = 1 + y_j], j, k = 1, 2, 3,$ using the notation $y_1 := d$, $y_2 := m$ and $y_3 := u$.