Mathematical Foundations for Finance Exercise Sheet 5

Please hand in your solutions by 12:00 on Wednesday, October 30 via the course homepage.

Exercise 5.1 On a probability space (Ω, \mathcal{F}, P) , consider a random variable X which is uniformly distributed on (0, 1). Let $Y = (Y_k)_{k=0}^2$ be the process given by

$$Y_0 = 0$$
, $Y_1 = X - \frac{1}{2}$, and $Y_2 = X - \frac{1}{2} + \frac{B}{X^2}$

for some random variable B independent of X and such that P[B = 1] = P[B = -1] = 1/2. Finally define the filtration $\mathbb{F} := (\mathcal{F}_k)_{k=0}^2$ by $\mathcal{F}_k := \sigma(Y_i, i \leq k)$.

- (a) Prove that Y is not a martingale.
- (b) Consider the sequence $(\tau_n)_{n \in \mathbb{N}}$ given by $\tau_n := \mathbb{1}_{\{X \ge 1/n\}} + 1$. Show that it is a sequence of stopping times increasing to 2 with $P[\tau_n = 2] \to 1$ as $n \to \infty$.
- (c) Prove that Y is a local martingale by showing that $(\tau_n)_{n \in \mathbb{N}}$ can be chosen as localising sequence.

Exercise 5.2 Let $(\Omega, \mathcal{F}, P, \mathbb{F} = (\mathcal{F}_k)_{k=0,\dots,T})$ be a filtered probability space and $S = (S_k)_{k=0,\dots,T}$ a discounted price process. Show that the following are equivalent:

- (a) S satisfies (NA).
- (b) For each k = 0, ..., T-1, the one-period market (S_k, S_{k+1}) on $(\Omega, \mathcal{F}_{k+1}, P, (\mathcal{F}_k, \mathcal{F}_{k+1}))$ satisfies (NA).

Give an economic interpretation of this result.

Hint: Prove the contraposition of the direction "(b) \Rightarrow (a)". Argue via induction on T.