Mathematical Foundations for Finance Exercise Sheet 6

Please hand in your solutions by 12:00 on Wednesday, November 6 via the [course](https://metaphor.ethz.ch/x/2024/hs/401-3913-01L/) [homepage.](https://metaphor.ethz.ch/x/2024/hs/401-3913-01L/)

Exercise 6.1 Let (Ω, \mathcal{F}) be a measurable space endowed with a filtration \mathbb{F} = $(\mathcal{F}_k)_{k=0,1,\dots,T}$. Recall that a *stopping time* is a random variable $\tau : \Omega \to \{0,1,\dots,T\}$ with the property that

$$
\{\tau \leq k\} \in \mathcal{F}_k
$$

for $k = 0, 1, \ldots, T$. Recall also the convention that inf $\emptyset = +\infty$. If $X = (X_k)_{k=0,1,\ldots,T}$ is an F-adapted process and $B \in \mathcal{B}(\mathbb{R})$ a Borel set, then

$$
\tau_{X,B} := \inf \{ k = 0, 1, \dots, T : X_k \in B \}
$$

is called the *first hitting time* of *X* on *B*.

- (a) Show that $\tau_{X,B} \wedge T$ is a stopping time.
- (b) Let τ be any stopping time. Show that there exist an adapted process X and a set $B \in \mathcal{B}(\mathbb{R})$ such that $\tau = \tau_{X,B}$. In other words, show that (up to truncating at *T*) every (first) hitting time of some adapted process *X* on some $B \in \mathcal{B}(\mathbb{R})$ is a stopping time and vice versa.

Hint: Try to construct such a process explicitly. It will depend on τ.

Exercise 6.2 Let $(\Omega, \mathcal{F}, \mathbb{F}, P)$ be a filtered probability space with $\mathbb{F} = (\mathcal{F}_k)_{k \in \mathbb{N}_0}$. Let $X = (X_k)_{k \in \mathbb{N}_0}$ be an adapted and integrable process.

(a) Find the *Doob decomposition* of *X*. In other words, prove that there exist a martingale $M = (M_k)_{k \in \mathbb{N}_0}$ and an integrable and predictable process $A =$ $(A_k)_{k \in \mathbb{N}_0}$ that are both null at zero, and such that

$$
X = X_0 + M + A P
$$
-a.s.

Hint: You may define $M_k := \sum_{j=1}^k (X_j - E[X_j | \mathcal{F}_{j-1}])$ *, for* $k \in \mathbb{N}$ *.*

(b) Prove that *M* and *A* are unique up to *P*-a.s. equality.

Exercise 6.3 Let $W = (W_t)_{t \geq 0}$ and $W' = (W'_t)_{t \geq 0}$ be two *independent* Brownian motions (BM) defined on some probability space (Ω, \mathcal{F}, P) . Show that

(a) $W^1 := -W$ is a BM.

Updated: November 7, [2](#page-1-0)024 $1/2$

- (b) $W_t^2 := W_{T+t} - W_T$, for $t \ge 0$, is a BM for any $T \in (0, \infty)$.
- (c) $W^3 := \alpha W +$ √ $1 - \alpha^2 W'$ is a BM for any $\alpha \in [0, 1]$.
- (d) Show that the independence of *W* and *W*′ in [\(c\)](#page-1-1) cannot be omitted, i.e., if *W* and W' are *not* independent, then W^3 need not be a BM. Give an example.