Mathematical Foundations for Finance Exercise Sheet 7

Please hand in your solutions by 12:00 on Wednesday, November 13 via the course homepage.

Exercise 7.1 Let $W = (W_t)_{t \ge 0}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F} := (\mathcal{F}_t)_{t \ge 0}$ is a filtration satisfying the usual conditions.

- (a) Let $f : \mathbb{R} \to \mathbb{R}$ be an arbitrary convex function. Show that if the stochastic process $(f(W_t))_{t\geq 0}$ is integrable, then it is a (P, \mathbb{F}) -submartingale. *Hint: We have done something similar in discrete time.*
- (b) Given a (P, \mathbb{F}) -martingale $(M_t)_{t \ge 0}$ and a measurable function $g \colon \mathbb{R}_+ \to \mathbb{R}$, show that the process

$$\left(M_t + g(t)\right)_{t \ge 0}$$

is a (P, \mathbb{F}) -supermartingale if and only if g is decreasing, and a (P, \mathbb{F}) -submartingale if and only if g is increasing.

Exercise 7.2 Let $W = (W_t)_{t \ge 0}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F} := (\mathcal{F}_t)_{t \ge 0}$ is a filtration satisfying the usual conditions.

- (a) Show that the following stochastic processes are (P, \mathbb{F}) -submartingales, but not martingales:
 - (i) W^2 ,
 - (ii) $e^{\alpha W}$ for any $\alpha \in \mathbb{R}$.
 - Hint: You may use the results from the Exercises 7.1(b) and 7.1(a), respectively.
- (b) Show that any (P, F)-local martingale which is null at 0 and uniformly bounded from below is a (P, F)-supermartingale. *Hint: We have done this in discrete time already.*

Exercise 7.3 Let $W = (W_t)_{t\geq 0}$ be a Brownian motion defined on some probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F} := (\mathcal{F}_t)_{t\geq 0}$ is a filtration satisfying the usual conditions.

For any constants $a, b \in \mathbb{R}$ such that a < 0 < b, consider the function $\tau : \Omega \to [0, \infty]$ given by

$$\tau := \inf\{t \ge 0 : W_t \notin [a, b]\}.$$

- (a) Show that τ is a stopping time.
 Hint: You may use the right-continuity of the filtration F.
- (b) Prove that $E[W_{\tau}] = 0$. Hint: You may apply the dominated convergence theorem.
- (c) Compute $P[W_{\tau} = a]$. Hint: You may use the result from (b).