Mathematical Foundations for Finance Exercise Sheet 8

Exercise 8.1 Consider a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F} := (\mathcal{F}_t)_{t \ge 0}$ is a filtration satisfying the usual conditions. On this space, let M be a local martingale null at 0 that satisfies $\sup_{0 \le t \le T} |M_t| \in L^2$ for some $T \in \mathbb{R}$.

- (a) Show that M is a square-integrable martingale on [0, T]. Hint: You may use the dominated convergence theorem.
- (b) Let [M] be the square bracket process of M. Prove that

$$E\left[\left[M\right]_{t}-\left[M\right]_{s}\middle|\mathcal{F}_{s}\right] = \operatorname{Var}[M_{t}-M_{s}\,|\mathcal{F}_{s}] \text{ P-a.s., for } 0 \le s \le t \le T.$$

Hint: You may use that $\operatorname{Var}[X | \mathcal{G}] = E\left[(X - E[X | \mathcal{G}])^2 | \mathcal{G} \right].$

Solution 8.1

(a) The process M is adapted by definition since it is a local martingale. Moreover, for any $s \in [0, T]$, it holds that

$$|M_s|^2 \le |M_T^*|^2$$
, where $M_T^* := \sup_{0 \le u \le T} |M_u|$.

By assumption, $M_T^* \in L^2$ and thus M is square-integrable on [0, T].

Now, let $(\tau_n)_{n\in\mathbb{N}}$ be a localizing sequence for M. For every fixed $n\in\mathbb{N}$, we have that

$$E[M_{\tau_n \wedge t} | \mathcal{F}_s] = M_{\tau_n \wedge s} P\text{-a.s., for } 0 \le s \le t \le T,$$
(1)

because M is a local martingale. Since $|M_{\tau_n \wedge t}|$ is bounded from above by the integrable random variable M_T^* , for all $0 \le t \le T$, the dominated convergence theorem gives us that

$$\lim_{n \to \infty} E\left[M_{\tau_n \wedge t} \,|\, \mathcal{F}_s\right] = E\left[\lim_{n \to \infty} M_{\tau_n \wedge t} \,\Big|\, \mathcal{F}_s\right] = E\left[M_t \,|\, \mathcal{F}_s\right] \,P\text{-a.s.} \tag{2}$$

On the other hand, we have for the right-hand side of (1) that

$$\lim_{n \to \infty} M_{\tau_n \wedge s} = M_s \ P\text{-a.s.},$$

which, together with (2), gives us the martingale property for M on [0, T] and concludes the proof.

Updated: November 21, 2024

1 / 5

(b) Since M is a square-integrable martingale on [0, T], the square bracket process [M] is integrable and $M^2 - [M]$ is a martingale according to Theorem 5.1.1 in the lecture notes. Therefore, for all $0 \le s \le t \le T$, it holds that

$$E\left[\left[M\right]_{t}-\left[M\right]_{s}\middle|\mathcal{F}_{s}\right] = E\left[M_{t}^{2}-M_{s}^{2}\middle|\mathcal{F}_{s}\right]$$
$$= E\left[\left(M_{t}-M_{s}\right)^{2}\middle|\mathcal{F}_{s}\right]$$
$$= E\left[\left(M_{t}-E\left[M_{t}\middle|\mathcal{F}_{s}\right]\right)^{2}\middle|\mathcal{F}_{s}\right]$$
$$= E\left[\left(M_{t}-M_{s}+M_{s}-E\left[M_{t}\middle|\mathcal{F}_{s}\right]\right)^{2}\middle|\mathcal{F}_{s}\right]$$
$$= E\left[\left(\left(M_{t}-M_{s}\right)-E\left[M_{t}-M_{s}\middle|\mathcal{F}_{s}\right]\right)^{2}\middle|\mathcal{F}_{s}\right]$$
$$= \operatorname{Var}[M_{t}-M_{s}\left|\mathcal{F}_{s}\right]P\text{-a.s.}$$

Exercise 8.2 Let (Ω, \mathcal{F}, P) a probability space. We consider a sequence $(Y_k)_{k \in \mathbb{N}}$ of square-integrable and independent random variables and the filtration $\mathbb{F} = (\mathcal{F}_k)_{k \in \mathbb{N}_0}$ given by $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and $\mathcal{F}_k = \sigma(Y_1, \ldots, Y_k)$ for all $k \in \mathbb{N}$. We assume that $(Y_k)_{k \in \mathbb{N}}$ are identically distributed, with $\mu := E[Y_k] \in \mathbb{R}$ and $\sigma^2 := \operatorname{Var}[Y_k] > 0$, for $k \in \mathbb{N}$. Define the process $X = (X_n)_{n \in \mathbb{N}_0}$ by

$$X_n = \sum_{k=1}^n Y_k$$
, for $n \in \mathbb{N}_0$.

Note that X is adapted to \mathbb{F} and integrable.

- (a) Derive the Doob decomposition of X. In other words, find the martingale $M = (M_n)_{n \in \mathbb{N}_0}$ and the predictable and integrable process $A = (A_n)_{n \in \mathbb{N}_0}$ that are both null at zero and such that X = M + A P-a.s. Deduce that M and A are square-integrable. Hint: see Exercise 6.2(a).
- (b) Find the optional quadratic variation [M] = ([M]_n)_{n∈N₀} of the square-integrable martingale M.
 Hint: You may use Theorem 5.1.1 in the lecture notes, and in particular the condition Δ[M] = (ΔM)².
- (c) Explicitly derive the predictable quadratic variation $\langle M \rangle = (\langle M \rangle_n)_{n \in \mathbb{N}_0}$ of the square-integrable martingale M.

Solution 8.2 To simplify notation, we omit "P-a.s." from all equalities below.

(a) Let us fix $n \in \mathbb{N}$. From Exercise 6.2(a), we know that

$$M_{n} = \sum_{j=1}^{n} \left(X_{j} - E[X_{j} | \mathcal{F}_{j-1}] \right)$$
$$= \sum_{j=1}^{n} \sum_{k=1}^{j} \left(Y_{k} - E[Y_{k} | \mathcal{F}_{j-1}] \right)$$
$$= \sum_{j=1}^{n} \left(Y_{j} - E[Y_{j} | \mathcal{F}_{j-1}] \right)$$

since Y_k is \mathcal{F}_{j-1} -measurable for all $k \leq j-1$. Moreover, Y_j is independent of \mathcal{F}_{j-1} , and thus

$$M_n = \sum_{j=1}^n (Y_j - E[Y_j]) = X_n - n\mu.$$

Hence,

$$A_n = X_n - M_n = n\mu.$$

We conclude that both M and A are square-integrable since so is the process X by assumption.

(b) Since the process M is a square-integrable martingale, Theorem 5.1.1 from the lecture notes states that there exists a unique adapted increasing RCLL process $[M] = ([M]_n)_{n \in \mathbb{N}_0}$ null at 0 with $\Delta[M] = (\Delta M)^2$ and having the property that $M^2 - [M]$ is a local martingale. Hence, for each $n \in \mathbb{N}$, we have

$$\Delta[M]_n = (\Delta M_n)^2 = (M_n - M_{n-1})^2 = (Y_n - \mu)^2,$$

so that

$$[M]_n = \sum_{j=1}^n \Delta[M]_j = \sum_{j=1}^n (Y_j - \mu)^2$$

(c) Since the process [M] is integrable, we know there exists a unique increasing predictable and integrable process $\langle M \rangle = (\langle M \rangle_n)_{n \in \mathbb{N}_0}$ null at 0 such that $[M] - \langle M \rangle$ is a martingale. Thus, for each $n \in \mathbb{N}$, it holds that

$$E\left[\left[M\right]_{n} - \left\langle M\right\rangle_{n} \middle| \mathcal{F}_{n-1}\right] = \left[M\right]_{n-1} - \left\langle M\right\rangle_{n-1}.$$

The fact that $\langle M \rangle$ is predictable gives that

$$\langle M \rangle_n - \langle M \rangle_{n-1} = E \left[[M]_n - [M]_{n-1} \middle| \mathcal{F}_{n-1} \right]$$

= $E \left[(Y_n - \mu)^2 \middle| \mathcal{F}_{n-1} \right] = \operatorname{Var}[Y_n] = \sigma^2$

which in turn gives that $\langle M \rangle_n = n\sigma^2$.

Updated: November 21, 2024

3 / 5

Exercise 8.3 This exercise proves the frequently used fact that a continuous local martingale of finite variation is identically constant (and hence vanishes if it is null at 0).

For p > 0, the *(functional)* p-variation of a function $g : [0, \infty) \to \mathbb{R}$ is the function defined by

$$V^{p}(g): [0,\infty) \to [0,\infty], V^{p}_{T}(g):= \sup_{\Pi} V^{p}_{T}(g,\Pi):= \sup_{\Pi} \sum_{t_{i}\in\Pi} |g(t_{i}\wedge T) - g(t_{i-1}\wedge T)|^{p}$$

where the supremum is taken over all partitions Π of $[0, \infty)$, i.e., over all sets $\Pi \subseteq [0, \infty)$ with $0 \in \Pi$ and $\Pi \cap [0, t]$ finite for all $t \ge 0$. A function g has finite *(functional) p-variation* if $V_T^p(g) < \infty$ for all $T \ge 0$, and *finite (functional) variation* if it has finite (functional) 1-variation. For p = 2, we also say (functional) "quadratic variation" instead of "2-variation". We say that g has zero p-variation along a sequence $(\Pi_n)_{n\in\mathbb{N}}$ of partitions if $\lim_{n\to\infty} V_T^p(g, \Pi_n) = 0$ for all $T \ge 0$. For $\Pi := (t_i)_{i\in\mathbb{N}}$ such that $t_i < t_{i+1}$ for all $i \in \mathbb{N}$, we also define $|\Pi| := \sup\{t_{i+1} - t_i \mid t_i, t_{i+1} \in \Pi\}$.

- (a) Show that if $g: [0, \infty) \to \mathbb{R}$ is a continuous function of finite variation, then it has zero quadratic variation along any sequence $(\Pi_n)_{n\in\mathbb{N}}$ of partitions such that $\lim_{n\to\infty} |\Pi_n| = 0$. (More generally, if g has finite p-variation, then it has zero r-variation for any r > p along any sequence $(\Pi_n)_{n\in\mathbb{N}}$ of partitions with $\lim_{n\to\infty} |\Pi_n| = 0$.)
- (b) Let $M = (M_t)_{t \ge 0}$ be a continuous local martingale null at 0. Show that if [M] = 0, then $M_t = 0$ *P*-a.s. for all $t \ge 0$.

Hint: Show the claim first when M is a square-integrable martingale. Extend then the conclusion by localisation.

(c) Show that a continuous local martingale $M = (M_t)_{t\geq 0}$ null at 0 and of finite variation is identically constant, i.e., $M_t = 0$ *P*-a.s. for all $t \geq 0$. Moreover, show that continuity is necessary, i.e., give an example of a local martingale $M = (M_t)_{t\geq 0}$ null at 0 of finite variation such that M is not identically equal to 0.

Hint: You may use the following result (compare with Theorem 4.1.4 in the lecture notes) to show that [M] = 0:

Let $M = (M_t)_{t\geq 0}$ be an RCLL local martingale null at 0. There exists a sequence $(\Pi_n)_{n\in\mathbb{N}}$ of partitions of $[0,\infty)$ with $\lim_{n\to\infty} |\Pi_n| = 0$ such that

$$P\left[\lim_{n \to \infty} V_t^2(M, \Pi_n) = [M]_t \text{ for all } t \ge 0\right] = 1.$$

Solution 8.3

(a) Fix T > 0 and a sequence $(\Pi_n)_{n \in \mathbb{N}}$ of partitions with $\lim_{n \to \infty} |\Pi_n| = 0$. Since g is continuous, we have that $|g(t_i \wedge T) - g(t_{i-1} \wedge T)| \to 0$ as $|\Pi_n| \to 0$. But g is

Updated: November 21, 2024

4 / 5

even uniformly continuous on the compact interval [0, T], so we even have

$$\sup_{t_i \in \Pi_n} |g(t_i \wedge T) - g(t_{i-1} \wedge T)| \to 0 \quad \text{as } |\Pi_n| \to 0$$

Then we have for any n

$$V_{T}^{r}(g,\Pi_{n}) = \sum_{t_{i}\in\Pi_{n}} |g(t_{i}\wedge T) - g(t_{i-1}\wedge T)|^{r}$$

$$\leq \sup_{t_{i}\in\Pi_{n}} |g(t_{i}\wedge T) - g(t_{i-1}\wedge T)|^{r-p} \sum_{t_{i}\in\Pi_{n}} |g(t_{i}\wedge T) - g(t_{i-1}\wedge T)|^{p}$$

$$\leq \sup_{t_{i}\in\Pi_{n}} |g(t_{i}\wedge T) - g(t_{i-1}\wedge T)|^{r-p} \sup_{\Pi} \sum_{t_{i}\in\Pi} |g(t_{i}\wedge T) - g(t_{i-1}\wedge T)|^{p}$$

The second factor is $V_T^p(g) < \infty$ by assumption, and the first factor goes to 0 as $n \to \infty$.

(b) By Theorem 5.1.1 in the lecture notes, $M^2 - [M] = M^2$ is a local martingale null at 0. Thus, there exists a localising sequence $(\tau_n)_n$ such that $(M^{\tau_n})^2$ is a martingale null at 0. Let $\widetilde{M} = M^{\tau_n}$. Then we have

$$E\left[\widetilde{M}_t^2\right] = 0 \quad \text{for} \quad t \ge 0.$$

Therefore, $\widetilde{M}_t = 0$ *P*-a.s. and hence $M_t^{\tau_n} = 0$ *P*-a.s. for all $n \in \mathbb{N}$ and all $t \ge 0$. Letting $n \to \infty$, we obtain $M_t = 0$ *P*-a.s. for all $t \ge 0$.

(c) Let M be a continuous local martingale null at 0 which has paths of finite variation. By the hint, we conclude that for a well-chosen sequence $(\Pi_n)_{n \in \mathbb{N}}$ of partitions such that $|\Pi_n| \to 0$ as $n \to \infty$, we have that

$$P\left[\lim_{n \to \infty} V_T^2(M, \Pi_n) = [M]_T \text{ for all } T \ge 0\right] = 1.$$

But by assumption, the paths of M, i.e., the functions $t \mapsto M_t(\omega)$, are continuous and of finite variation. Hence by part a), $\lim_{n\to\infty} V_T^2(M(\omega), \Pi_n) = 0$ for all those $\omega \in \Omega$ for which $t \mapsto M_t(\omega)$ is of finite variation. By definition, this is a set of full probability and hence $t \mapsto [M]_t(\omega)$ is identically equal to 0 for P-a.a. ω . Part b) then implies the claim.

Define

$$M_t := \begin{cases} 0 & \text{for } t < 1 \\ Z & \text{for } t \ge 1, \end{cases}$$

where Z is any integrable \mathcal{F}_t -measurable random variable with E[Z] = 0. Since M is of finite variation, if $Z \neq 0$ a.s., then $M = (M_t)_{t\geq 0}$ is a counterexample that shows that (a.s.) continuity is necessary.