Mathematical Foundations for Finance Exercise Sheet 8

Exercise 8.1 Consider a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F} := (\mathcal{F}_t)_{t \geq 0}$ is a filtration satisfying the usual conditions. On this space, let *M* be a local martingale null at 0 that satisfies $\sup_{0 \le t \le T} |M_t| \in L^2$ for some $T \in \mathbb{R}$.

- (a) Show that *M* is a square-integrable martingale on $[0, T]$. *Hint: You may use the dominated convergence theorem.*
- (b) Let [*M*] be the square bracket process of *M*. Prove that

$$
E\big[[M]_t - [M]_s \, \Big| \, \mathcal{F}_s \big] = \text{Var}[M_t - M_s \, | \, \mathcal{F}_s] \, P\text{-a.s., for } 0 \le s \le t \le T.
$$

Hint: You may use that $\text{Var}[X | \mathcal{G}] = E[(X - E[X | \mathcal{G}])^2 | \mathcal{G}]$.

Solution 8.1

(a) The process *M* is adapted by definition since it is a local martingale. Moreover, for any $s \in [0, T]$, it holds that

$$
|M_s|^2 \le |M_T^*|^2
$$
, where $M_T^* := \sup_{0 \le u \le T} |M_u|$.

By assumption, $M_T^* \in L^2$ and thus *M* is square-integrable on [0, *T*].

Now, let $(\tau_n)_{n\in\mathbb{N}}$ be a localizing sequence for *M*. For every fixed $n \in \mathbb{N}$, we have that

$$
E\left[M_{\tau_n\wedge t} \,|\, \mathcal{F}_s\right] = M_{\tau_n\wedge s} \; P\text{-a.s., for } 0 \le s \le t \le T,\tag{1}
$$

because *M* is a local martingale. Since $|M_{\tau_n \wedge t}|$ is bounded from above by the integrable random variable M_T^* , for all $0 \le t \le T$, the dominated convergence theorem gives us that

$$
\lim_{n \to \infty} E\left[M_{\tau_n \wedge t} \,|\, \mathcal{F}_s\right] = E\left[\lim_{n \to \infty} M_{\tau_n \wedge t} \,|\, \mathcal{F}_s\right] = E\left[M_t \,|\, \mathcal{F}_s\right] \,P\text{-a.s.}\tag{2}
$$

On the other hand, we have for the right-hand side of (1) that

$$
\lim_{n \to \infty} M_{\tau_n \wedge s} = M_s \; P\text{-a.s.},
$$

which, together with (2), gives us the martingale property for *M* on [0*, T*] and concludes the proof.

Updated: November 21, 2024 $1/5$

(b) Since M is a square-integrable martingale on $[0, T]$, the square bracket process [*M*] is integrable and $M^2 - [M]$ is a martingale according to Theorem 5.1.1 in the lecture notes. Therefore, for all $0 \leq s \leq t \leq T$, it holds that

$$
E\left[\left[M\right]_t - \left[M\right]_s \middle| \mathcal{F}_s\right] = E\left[M_t^2 - M_s^2 \middle| \mathcal{F}_s\right]
$$

\n
$$
= E\left[\left(M_t - M_s\right)^2 \middle| \mathcal{F}_s\right]
$$

\n
$$
= E\left[\left(M_t - E\left[M_t \middle| \mathcal{F}_s\right]\right)^2 \middle| \mathcal{F}_s\right]
$$

\n
$$
= E\left[\left(M_t - M_s + M_s - E\left[M_t \middle| \mathcal{F}_s\right]\right)^2 \middle| \mathcal{F}_s\right]
$$

\n
$$
= E\left[\left((M_t - M_s) - E\left[M_t - M_s \middle| \mathcal{F}_s\right]\right)^2 \middle| \mathcal{F}_s\right]
$$

\n
$$
= \text{Var}\left[M_t - M_s \middle| \mathcal{F}_s\right] P\text{-a.s.}
$$

Exercise 8.2 Let (Ω, \mathcal{F}, P) a probability space. We consider a sequence $(Y_k)_{k \in \mathbb{N}}$ of square-integrable and independent random variables and the filtration $\mathbb{F} = (\mathcal{F}_k)_{k \in \mathbb{N}_0}$ given by $\mathcal{F}_0 = \{ \emptyset, \Omega \}$ and $\mathcal{F}_k = \sigma(Y_1, \ldots, Y_k)$ for all $k \in \mathbb{N}$. We assume that $(Y_k)_{k \in \mathbb{N}}$ are identically distributed, with $\mu := E[Y_k] \in \mathbb{R}$ and $\sigma^2 := \text{Var}[Y_k] > 0$, for $k \in \mathbb{N}$. Define the process $X = (X_n)_{n \in \mathbb{N}_0}$ by

$$
X_n = \sum_{k=1}^n Y_k
$$
, for $n \in \mathbb{N}_0$.

Note that X is adapted to $\mathbb F$ and integrable.

(a) Derive the Doob decomposition of *X*. In other words, find the martingale $M = (M_n)_{n \in \mathbb{N}_0}$ and the predictable and integrable process $A = (A_n)_{n \in \mathbb{N}_0}$ that are both null at zero and such that $X = M + A$ *P*-a.s. Deduce that *M* and *A* are square-integrable. *Hint: see Exercise 6.2(a).*

- (b) Find the optional quadratic variation $[M] = ([M]_n)_{n \in \mathbb{N}_0}$ of the square-integrable martingale *M*. *Hint: You may use Theorem 5.1.1 in the lecture notes, and in particular the* $\text{condition } \Delta[M] = (\Delta M)^2.$
- (c) Explicitly derive the predictable quadratic variation $\langle M \rangle = (\langle M \rangle_n)_{n \in \mathbb{N}_0}$ of the square-integrable martingale *M*.

Solution 8.2 To simplify notation, we omit "*P*-a.s." from all equalities below.

(a) Let us fix $n \in \mathbb{N}$. From Exercise 6.2(a), we know that

$$
M_n = \sum_{j=1}^n \left(X_j - E\left[X_j \, | \, \mathcal{F}_{j-1} \right] \right)
$$

=
$$
\sum_{j=1}^n \sum_{k=1}^j \left(Y_k - E\left[Y_k \, | \, \mathcal{F}_{j-1} \right] \right)
$$

=
$$
\sum_{j=1}^n \left(Y_j - E\left[Y_j \, | \, \mathcal{F}_{j-1} \right] \right)
$$

since Y_k is \mathcal{F}_{j-1} -measurable for all $k \leq j-1$. Moreover, Y_j is independent of \mathcal{F}_{i-1} , and thus

$$
M_n = \sum_{j=1}^n (Y_j - E[Y_j]) = X_n - n\mu.
$$

Hence,

$$
A_n = X_n - M_n = n\mu.
$$

We conclude that both *M* and *A* are square-integrable since so is the process *X* by assumption.

(b) Since the process *M* is a square-integrable martingale, Theorem 5.1.1 from the lecture notes states that there exists a unique adapted increasing RCLL process $[M] = ([M]_n)_{n \in \mathbb{N}_0}$ null at 0 with $\Delta[M] = (\Delta M)^2$ and having the property that $M^2 - [M]$ is a local martingale. Hence, for each $n \in \mathbb{N}$, we have

$$
\Delta[M]_n = (\Delta M_n)^2 = (M_n - M_{n-1})^2 = (Y_n - \mu)^2,
$$

so that

$$
[M]_n = \sum_{j=1}^n \Delta [M]_j = \sum_{j=1}^n (Y_j - \mu)^2,
$$

(c) Since the process [*M*] is integrable, we know there exists a unique increasing predictable and integrable process $\langle M \rangle = (\langle M \rangle_n)_{n \in \mathbb{N}_0}$ null at 0 such that $[M] - \langle M \rangle$ is a martingale. Thus, for each $n \in \mathbb{N}$, it holds that

$$
E\big[[M]_n - \langle M \rangle_n \, \big| \, \mathcal{F}_{n-1} \big] = [M]_{n-1} - \langle M \rangle_{n-1}.
$$

The fact that $\langle M \rangle$ is predictable gives that

$$
\langle M \rangle_n - \langle M \rangle_{n-1} = E \left[[M]_n - [M]_{n-1} \Big| \mathcal{F}_{n-1} \right]
$$

=
$$
E \left[(Y_n - \mu)^2 \Big| \mathcal{F}_{n-1} \right] = \text{Var}[Y_n] = \sigma^2,
$$

which in turn gives that $\langle M \rangle_n = n\sigma^2$.

Updated: November 21, 2024 $3/5$

Exercise 8.3 This exercise proves the frequently used fact that a continuous local martingale of finite variation is identically constant (and hence vanishes if it is null at 0).

For $p > 0$, the *(functional) p*-variation of a function $q : [0, \infty) \to \mathbb{R}$ is the function defined by

$$
V^p(g) : [0, \infty) \to [0, \infty], \ \ V^p_T(g) := \sup_{\Pi} V^p_T(g, \Pi) := \sup_{\Pi} \sum_{t_i \in \Pi} |g(t_i \wedge T) - g(t_{i-1} \wedge T)|^p,
$$

where the supremum is taken over all partitions Π of $[0,\infty)$, i.e., over all sets Π ⊆ [0*,*∞) with 0 ∈ Π and Π ∩ [0*, t*] finite for all *t* ≥ 0. A function *g* has finite *(functional) p*-variation if V_T^p $T_T^p(g) < \infty$ for all $T \geq 0$, and *finite (functional) variation* if it has finite (functional) 1-variation. For $p = 2$, we also say (functional) "quadratic variation" instead of "2-variation". We say that *g* has zero *p*-variation along a sequence $(\Pi_n)_{n \in \mathbb{N}}$ of partitions if $\lim_{n \to \infty} V_T^p$ $T_T^p(g, \Pi_n) = 0$ for all $T \geq 0$. For $\Pi := (t_i)_{i \in \mathbb{N}}$ such that $t_i < t_{i+1}$ for all $i \in \mathbb{N}$, we also define $|\Pi| := \sup\{t_{i+1} - t_i \mid t_i, t_{i+1} \in \Pi\}.$

- (a) Show that if $g : [0, \infty) \to \mathbb{R}$ is a continuous function of finite variation, then it has zero quadratic variation along any sequence $(\Pi_n)_{n\in\mathbb{N}}$ of partitions such that $\lim_{n\to\infty}|\Pi_n|=0$. (More generally, if *q* has finite *p*-variation, then it has zero *r*-variation for any $r > p$ along any sequence $(\Pi_n)_{n \in \mathbb{N}}$ of partitions with $\lim_{n\to\infty}|\Pi_n|=0.$
- (b) Let $M = (M_t)_{t>0}$ be a continuous local martingale null at 0. Show that if $[M] = 0$, then $M_t = 0$ *P*-a.s. for all $t \geq 0$.

Hint: Show the claim first when M is a square-integrable martingale. Extend then the conclusion by localisation.

(c) Show that a continuous local martingale $M = (M_t)_{t>0}$ null at 0 and of finite variation is identically constant, i.e., $M_t = 0$ *P*-a.s. for all $t \geq 0$. Moreover, show that continuity is necessary, i.e., give an example of a local martingale $M = (M_t)_{t>0}$ null at 0 of finite variation such that M is not identically equal to 0.

Hint: You may use the following result (compare with Theorem 4.1.4 in the lecture notes) to show that $[M] = 0$ *:*

Let $M = (M_t)_{t>0}$ *be an RCLL local martingale null at* 0*. There exists a sequence* $(\Pi_n)_{n\in\mathbb{N}}$ *of partitions of* $[0,\infty)$ *with* $\lim_{n\to\infty}|\Pi_n|=0$ *such that*

$$
P\left[\lim_{n\to\infty}V_t^2(M,\Pi_n)=[M]_t \text{ for all } t\geq 0\right]=1.
$$

Solution 8.3

(a) Fix $T > 0$ and a sequence $(\Pi_n)_{n \in \mathbb{N}}$ of partitions with $\lim_{n \to \infty} |\Pi_n| = 0$. Since g is continuous, we have that $|g(t_i \wedge T) - g(t_{i-1} \wedge T)| \rightarrow 0$ as $|\Pi_n| \rightarrow 0$. But *g* is

Updated: November 21, 2024 $\frac{4}{5}$

even uniformly continuous on the compact interval [0*, T*], so we even have

$$
\sup_{t_i \in \Pi_n} |g(t_i \wedge T) - g(t_{i-1} \wedge T)| \to 0 \quad \text{as } |\Pi_n| \to 0.
$$

Then we have for any *n*

$$
V_T^r(g, \Pi_n) = \sum_{t_i \in \Pi_n} |g(t_i \wedge T) - g(t_{i-1} \wedge T)|^r
$$

\n
$$
\leq \sup_{t_i \in \Pi_n} |g(t_i \wedge T) - g(t_{i-1} \wedge T)|^{r-p} \sum_{t_i \in \Pi_n} |g(t_i \wedge T) - g(t_{i-1} \wedge T)|^p
$$

\n
$$
\leq \sup_{t_i \in \Pi_n} |g(t_i \wedge T) - g(t_{i-1} \wedge T)|^{r-p} \sup_{\Pi} \sum_{t_i \in \Pi} |g(t_i \wedge T) - g(t_{i-1} \wedge T)|^p.
$$

The second factor is V_T^p $T_T^p(g) < \infty$ by assumption, and the first factor goes to 0 as $n \to \infty$.

(b) By Theorem 5.1.1 in the lecture notes, $M^2 - [M] = M^2$ is a local martingale null at 0. Thus, there exists a localising sequence $(\tau_n)_n$ such that $(M^{\tau_n})^2$ is a martingale null at 0. Let $\tilde{M} = M^{\tau_n}$. Then we have

$$
E\left[\widetilde{M}_t^2\right] = 0 \quad \text{for} \quad t \ge 0 \,.
$$

Therefore, $\widetilde{M}_t = 0$ *P*-a.s. and hence $M_t^{\tau_n} = 0$ *P*-a.s. for all $n \in \mathbb{N}$ and all $t \ge 0$. Letting $n \to \infty$, we obtain $M_t = 0$ *P*-a.s. for all $t > 0$.

(c) Let *M* be a continuous local martingale null at 0 which has paths of finite variation. By the hint, we conclude that for a well-chosen sequence $(\Pi_n)_{n\in\mathbb{N}}$ of partitions such that $|\Pi_n| \to 0$ as $n \to \infty$, we have that

$$
P\left[\lim_{n\to\infty} V_T^2(M,\Pi_n) = [M]_T \text{ for all } T \ge 0\right] = 1.
$$

But by assumption, the paths of *M*, i.e., the functions $t \mapsto M_t(\omega)$, are continuous and of finite variation. Hence by part a), $\lim_{n\to\infty} V_T^2(M(\omega), \Pi_n) = 0$ for all those $\omega \in \Omega$ for which $t \mapsto M_t(\omega)$ is of finite variation. By definition, this is a set of full probability and hence $t \mapsto [M]_t(\omega)$ is identically equal to 0 for *P*-a.a. ω . Part b) then implies the claim.

Define

$$
M_t := \begin{cases} 0 & \text{for } t < 1 \\ Z & \text{for } t \ge 1, \end{cases}
$$

where *Z* is any integrable \mathcal{F}_t -measurable random variable with $E[Z] = 0$. Since *M* is of finite variation, if $Z \neq 0$ a.s., then $M = (M_t)_{t \geq 0}$ is a counterexample that shows that (a.s.) continuity is necessary.