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Exercise 9.1 Let W = (Wt)t≥0 be a Brownian motion defined on some prob-
ability space (Ω, F ,F, P ), where F := (Ft)t≥0 is a filtration satisfying the usual
conditions.

(a) For some constants S0 > 0, µ ∈ R and σ > 0, we define the geometric Brownian
motion S = (St)t⩾0 as follows

St := S0 exp
((

µ − σ2

2

)
t + σWt

)
.

Compute limt→∞ St when µ ̸= σ2

2 . Determine whether the limit exists if µ = σ2

2 .
Hint: You may use the law of the iterated logarithm.

(b) Prove that

E[W 3
t − W 3

s | Fs] = 3(t − s)Ws P -a.s., for 0 ≤ s < t.

Hint: You may compute E[(Wt − Ws)3 | Fs].

Solution 9.1

(a) For any t ≥ 0, we can rewrite St as

St = S0 exp
((

µ − σ2

2

)
t + σ

√
2t log log t

Wt√
2t log log t

)

= S0 exp
√2t log log t

((
µ − σ2

2

)
t√

2t log log t
+ σ

Wt√
2t log log t

).

Since
lim
t→∞

√
2t log log t = +∞ and lim

t→∞

t√
2t log log t

= +∞,

and by the law of the iterated logarithm, it follows that:

• when µ > σ2

2 ,
lim
t→∞

St = +∞ P -a.s.;

• when µ < σ2

2 ,
lim
t→∞

St = 0 P -a.s.

Updated: November 28, 2024 1 / 6



Mathematical Foundations for Finance, Fall 2024 Exercise Sheet 9

If µ = σ2

2 , the limit limt→∞ St does not exist since

P
(

lim inf
t→∞

St = 0
)

= 1 and P
(

lim sup
t→∞

St = +∞
)

= 1.

(b) To simplify notation, we omit "P -a.s." from all equalities below. Let us fix
some 0 ≤ s < t. Since Wt − Ws is independent of Fs, so is (Wt − Ws)3. Hence,

E[(Wt − Ws)3 | Fs] = E[(Wt − Ws)3].

Since Wt − Ws ∼ N(0, t − s), then E[(Wt − Ws)3] = 0, and thus

E[W 3
t − W 3

s | Fs] = E[W 3
t − W 3

s | Fs] − E[(Wt − Ws)3 | Fs]
= E[3W 2

t Ws − 3WtW
2
s | Fs].

From the fact that Wt and Ws are normal random variables, we deduce that
Wt, W 2

t , Ws, W 2
s , and all products, are integrable. Hence, we get

E[W 3
t − W 3

s | Fs] = 3WsE[W 2
t | Fs] − 3W 2

s E[Wt | Fs]
= 3Ws(W 2

s + t − s) − 3W 3
s

= 3(t − s)Ws,

where in the second step we have used that (W )t⩾0 and (W 2
t − t)t⩾0 are

martingales.

Exercise 9.2 On a filtered probability space (Ω, F ,F, P ), consider an adapted
process X = (Xt)t≥0 null at 0. Assume that X is integrable and has independent
and stationary increments, i.e. Xt − Xs is independent of Fs and has the same
distribution as Xt−s for all t > s ≥ 0.

(a) Under which conditions on (E [Xt])t≥0 is X a martingale? And a supermartin-
gale? A submartingale?

(b) From this point onward, let us assume that X is a square-integrable martingale.
Prove that

E[X2
t ] + E[X2

s ] = E[X2
t+s] for any t, s ≥ 0,

and deduce that (E [X2
t ])t≥0 is an increasing process.

(c) Deduce from (b) that E [X2
t ] = tE [X2

1 ] for all t ≥ 0.
Hint: Prove the result first for t = 1/n for all n ∈ N. Then, deduce that it
holds true for all t ∈ Q+ and use monotonicity to conclude.

(d) Prove that ⟨X⟩t = tE [X2
1 ] for all t ≥ 0.

Hint: You may use your result from (c).
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Solution 9.2

(a) Adaptedness and integrability are already given by assumption. Let us fix some
t > s ≥ 0. We can then use the fact that X has independent and stationary
increments to compute

E [Xt |Fs] = E [Xt − Xs |Fs] + Xs = E [Xt − Xs] + Xs = E [Xt−s] + Xs P -a.s.

As a result, X is a martingale if and only if E [Xt] = 0 for all t ≥ 0, a
supermartingale if and only if E [Xt] ≤ 0 for all t ≥ 0, and a submartingale if
and only if E [Xt] ≥ 0 for all t ≥ 0.

(b) Let us fix t, s > 0. By the martingale property of X and the stationarity of
the increments, we can directly compute

E[X2
t+s] − E[X2

t ] = E[X2
t+s − X2

t ] = E[(Xt+s − Xt)2] = E[X2
s ]

as a consequence of Exercise 9.1. Consequently, we have that

E[X2
t ] − E[X2

s ] = E[X2
t−s] ≥ 0 for any t ≥ s,

proving that the process (E [X2
t ])t≥0 is increasing.

(c) Let t = 1/n for some n ∈ N. We want to show that nE[X2
1/n] = E [X2

1 ]. It
holds that

nE[X2
1/n] =

n∑
k=1

E[X2
1/n] =

n∑
k=1

(
E[X2

k/n] − E[X2
(k−1)/n]

)
= E[X2

1 ] − E[X2
0 ] = E[X2

1 ],

where in the second equality we have used our result from (b). If we now
consider an arbitrary number ℓ/n ∈ Q+, we can use the same technique as in
the above to compute

ℓE[X2
1/n] =

ℓ∑
k=1

E[X2
1/n] = E[X2

ℓ/n].

Since E[X2
1/n] = E[X2

1 ]/n, we can conclude that E[X2
ℓ/n] = ℓE[X2

1 ]/n. There-
fore, we have proved that E [X2

t ] = tE [X2
1 ] for all t ∈ Q+. We can conclude

the proof using the fact that (E [X2
t ])t≥0 is increasing. Precisely,

tE[X2
1 ] = sup

s∈Q+,s<t
sE[X2

1 ] = sup
s∈Q+,s<t

E[X2
s ]

≤ E[X2
t ] ≤ inf

s∈Q+,s>t
E[X2

s ] = tE[X2
1 ],

and thus conclude that E [X2
t ] = tE [X2

1 ].
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(d) We first have to show that (tE [X2
1 ])t≥0 is an increasing, predictable process

null at 0. Since E [X2
1 ] ≥ 0, the process is clearly increasing. Moreover, it is

deterministic and continuous, thus it is predictable and it is clearly null at
0. It only remains to show that the process (X2

t − tE [X2
1 ])t≥0 is a martingale.

Since the increments are independent and stationary we can compute

E[X2
t − X2

s |Fs] = E[(Xt − Xs)2|Fs] = E[(Xt − Xs)2]
= E[X2

t−s]
= (t − s)E[X2

1 ]
= tE[X2

1 ] − sE[X2
1 ] P -a.s. for all t > s ≥ 0,

where the fourth equality uses our result from (c). Rearranging the above, we
obtain that

E[X2
t − tE[X2

1 ] − (X2
s − sE[X2

1 ])|Fs] = 0 P -a.s.,

which is the martingale property for (X2
t − tE [X2

1 ])t≥0.

Exercise 9.3 Consider a filtered probability space (Ω, F ,F, P ), where the filtration
F satisfies the usual conditions.

(a) Let X be an adapted process and τ a stopping time. Show that if Xτ is a
martingale, then so is Xσ for any stopping time σ with σ ≤ τ P -a.s.
Hint: You may use the result that a stopped martingale is again a martingale.

(b) Let M and N be two local martingales. Show that the linear combination
αM + βN for any α, β ∈ R is a local martingale.
Hint: You may use your result in (a).

(c) We say that two Brownian motions W 1 and W 2 on (Ω, F ,F, P ) are correlated
with instantaneous correlation ρ ∈ [−1, 1] if, for s ≤ t, the increments W 1

t −W 1
s

and W 2
t − W 2

s are independent of Fs and jointly normally distributed with
N (µ, Σ), where

µ =
(

0
0

)
and Σ =

(
t − s ρ(t − s)

ρ(t − s) t − s

)
.

Show that [W 1, W 2]t = ρt P -a.s.
Hint: You may find λ ∈ R such that Bλ := λ(W 1 + W 2) is a Brownian motion.
Then, compute [Bλ] in terms of W 1 and W 2, using the properties of [ · , · ].

Solution 9.3

(a) For notational clarity, we define Y := Xτ . Note that since σ ≤ τ P -a.s. by
assumption, we can write for all t ≥ 0 that

Xσ
t = Xt∧σ = Xt∧τ∧σ = Xτ

t∧σ = Y σ
t P -a.s.
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But Y is a martingale by assumption; so Y σ, the stopped martingale, is a
martingale as well. The above equation then directly implies the same for Xσ.

(b) Let (τn)n∈N and (σn)n∈N be two localizing sequences for M and N , respectively.
Let us fix n ∈ N, and define θn := min(τn, σn). It follows that θn ≤ τn P -a.s.
as well as θn ≤ σn P -a.s., and thus our result from (a) implies that both M θn

and N θn are martingales if θn is a stopping time. We can conclude that

αM θn + βN θn = (αM + βN)θn P -a.s.

is a martingale.

What thus remains to be shown is that (θn)n∈N is indeed a sequence of stopping
times with θn ↗ ∞ P -a.s. The fact that θn ↗ ∞ P -a.s. is trivial since we have
that both τn ↗ ∞ and σ ↗ ∞ P -a.s. In order to show that θn is a stopping
time for each n ∈ N, we note that

{θn ≤ t} = {min(τn, σn) ≤ t} = {τn ≤ t} ∪ {σn ≤ t} ∈ Ft,

since {τn ≤ t} ∈ Ft and {σn ≤ t} ∈ Ft because τn and σn are stopping times.
This shows that (θn)n∈N is a localizing sequence for αM + βN and concludes
the proof.

(c) Let us define Bλ := λ(W 1 + W 2), for λ ∈ R. The process Bλ is adapted and
such that Bλ

0 = 0 P -a.s., and its trajectories are continuous for P -a.e. ω ∈ Ω.
Therefore, for it to be a Brownian motion, we need to check that Bλ

t − Bλ
s is

independent of Fs and has a normal distribution N (0, t − s), for any 0 ≤ s ≤ t.
We have that

Bλ
t − Bλ

s = λ(W 1
t − W 1

s ) + λ(W 2
t − W 2

s ) ∼ N (0, λ2(2(t − s) + 2ρ(t − s)))
∼ N (0, λ2(t − s)(2 + 2ρ))

because W 1 and W 2 are Brownian motions such that (W 1
t − W 1

s , W 2
t − W 2

s ) ∼
N (µ, Σ) with

µ =
(

0
0

)
and Σ =

(
t − s ρ(t − s)

ρ(t − s) t − s

)
,

and we know that linear transformations of normal random vectors are normally
distributed. We can deduce that by setting λ2 = 1/(2 + 2ρ), Bλ is a Brownian
motion.

As suggested in the hint, let us now compute the quadratic variation of Bλ

using that [Bλ] = [Bλ, Bλ] and the bilinearity and symmetry of [ · , · ]. We have
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that

[Bλ]t = [λ(W 1 + W 2), λ(W 1 + W 2)]t = λ2[W 1 + W 2, W 1 + W 2]t
= λ2([W 1, W 1 + W 2]t + [W 2, W 1 + W 2]t)
= λ2([W 1, W 1]t + [W 1, W 2]t + [W 2, W 1]t + [W 2, W 2]t)
= λ2([W 1]t + 2[W 1, W 2]t + [W 2]t)
= 2λ2([W 1, W 2]t + t),

where the last equality follows from the fact that W 1 and W 2 are Brownian
motions, and we thus have that [W 1]t = t and [W 2]t = t P -a.s. We can thus
rearrange the above terms to obtain that

[W 1, W 2]t = 1
2λ2 [Bλ]t − t.

But the choice λ2 = 1/(2 + 2ρ) leads to Bλ being a Brownian motion, in which
case [Bλ]t = t P -a.s. We conclude that

[W 1, W 2]t = t
( 1

2λ2 − 1
)

= t
(2 + 2ρ

2 − 1
)

= ρt P -a.s. for all t ≥ 0.
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