Commutative Algebra

Exercise Sheet 1

RADICAL IDEALS, DECOMPOSITION, ZARISKI TOPOLOGY

Exercises 2 and 6 are taken from the book *Introduction to Commutative Algebra* by Atiyah and MacDonald.

- 1. (a) Show that if \mathfrak{a} is an ideal in a ring R and $\operatorname{Rad}(\mathfrak{a})$ its radical ideal, then $V(\mathfrak{a}) = V(\operatorname{Rad}(\mathfrak{a})).$
 - (b) Show that a proper ideal $\mathfrak{p} \subsetneq R$ is a prime ideal if and only if, for any ideals $\mathfrak{a}, \mathfrak{b} \subset R$ with $\mathfrak{ab} \subset \mathfrak{p}$, we have $\mathfrak{a} \subset \mathfrak{p}$ or $\mathfrak{b} \subset \mathfrak{p}$.
 - (c) Show that every prime ideal is radical. Find an example which shows that the converse is *not* true.
- 2. Let X be a topological space. Show that
 - (a) For any irreducible subspace Y of X, the closure \overline{Y} of Y in X is irreducible.
 - (b) Every irreducible subspace of X is contained in a maximal irreducible subspace.
 - (c) The maximal irreducible subspaces of X are closed and cover X. They are called the *irreducible components* of X.
 - (d) What are the irreducible components of a Hausdorff space?
- 3. Determine the ideal in $\mathbb{R}[\underline{X}]$ of
 - (a) the union of the three coordinate axes in \mathbb{R}^3 ,
 - (b) the union of the lines containing the twelve edges of the cube in \mathbb{R}^3 with vertices $(\pm 1, \pm 1, \pm 1)$,
 - (c) the set $\{(n, e^n) \mid n \in \mathbb{Z}^{\geq 0}\}$ in \mathbb{R}^2 .
- 4. Compute the irreducible components of $V(XZ Y^2, X^3 YZ)$ in \mathbb{C}^3 .
- *5 Show that every ring homomorphism $\varphi \colon R \to R'$ induces a continuous map $\operatorname{Spec} R' \to \operatorname{Spec} R, \mathfrak{p} \mapsto \varphi^{-1}(\mathfrak{p}).$

- 6. Let \mathfrak{p} and \mathfrak{q} be prime ideals of a ring R. Show that
 - (a) the set $\{\mathfrak{p}\}$ is closed in Spec *R* if and only if \mathfrak{p} is maximal. In that case we call \mathfrak{p} a *closed point*.
 - (b) $\overline{\{\mathfrak{p}\}} = V(\mathfrak{p}).$
 - (c) $\mathfrak{q} \in \overline{\{\mathfrak{p}\}} \iff \mathfrak{p} \subset \mathfrak{q}$.
 - (d) Spec R is a T_0 -space, i.e., for any distinct points $\mathfrak{p}, \mathfrak{q}$ of Spec R, there exists a neighborhood of \mathfrak{p} which does not contain \mathfrak{q} , or a neighborhood of \mathfrak{q} which does not contain \mathfrak{p} .