Commutative Algebra

Exercise Sheet 2

LOCALIZATION, LOCAL RINGS, RADICALS

Exercises 1, 2, 4 and 6 are taken from the book *Introduction to Commutative Algebra* by Atiyah and MacDonald.

- 1. Let R be a ring, let S and T be two multiplicative subsets of R, and let U be the image of T in $S^{-1}R$. Show that the rings $(ST)^{-1}R$ and $U^{-1}(S^{-1}R)$ are isomorphic.
- 2. Let $\varphi \colon R \to R'$ be a ring homomorphism. Prove for any ideals $\mathfrak{a}_1, \mathfrak{a}_2, \mathfrak{a}$ of R and any ideals $\mathfrak{b}_1, \mathfrak{b}_2, \mathfrak{b}$ of R':

$\varphi_*(\mathfrak{a}_1 + \mathfrak{a}_2) = \varphi_*(\mathfrak{a}_1) + \varphi_*(\mathfrak{a}_2)$	$\varphi^*(\mathfrak{b}_1 + \mathfrak{b}_2) \supset \varphi^*(\mathfrak{b}_1) + \varphi^*(\mathfrak{b}_2)$
$arphi_*(\mathfrak{a}_1\cap\mathfrak{a}_2)\subset arphi_*(\mathfrak{a}_1)\cap arphi_*(\mathfrak{a}_2)$	$\varphi^*(\mathfrak{b}_1 \cap \mathfrak{b}_2) = \varphi^*(\mathfrak{b}_1) \cap \varphi^*(\mathfrak{b}_2)$
$arphi_*(\mathfrak{a}_1\cdot\mathfrak{a}_2)=arphi_*(\mathfrak{a}_1)\cdotarphi_*(\mathfrak{a}_2)$	$arphi^*(\mathfrak{b}_1\cdot\mathfrak{b}_2)\supsetarphi^*(\mathfrak{b}_1)\cdotarphi^*(\mathfrak{b}_2)$
$\varphi_*(\operatorname{Rad}(\mathfrak{a})) \subset \operatorname{Rad}(\varphi_*(\mathfrak{a}))$	$\varphi^*(\operatorname{Rad}(\mathfrak{b})) = \operatorname{Rad}(\varphi^*(\mathfrak{b}))$

The set of ideals $\{\varphi_*\mathfrak{a} \mid \mathfrak{a} \subset R \text{ ideal}\}$ in R' is closed under sum and product, and the set of ideals $\{\varphi^*\mathfrak{b} \mid \mathfrak{b} \subset R' \text{ ideal}\}$ in R is closed under the other two operations.

- 3. (a) For an integer a > 1 and a non-zero integer b, consider the multiplicative subset S of $\mathbb{Z}/a\mathbb{Z}$ consisting of the residue classes $b^n + a\mathbb{Z}$ for all $n \ge 0$. Compute $S^{-1}(\mathbb{Z}/a\mathbb{Z})$.
 - (b) Compute the localization $S^{-1}R$ for the ring R = K[X,Y]/(XY) and the multiplicative set $S = \{X^n \mid n \ge 0\}$.
 - (c) Show that for any ring R and any $t \in R$ the localization R_t of R at t is isomorphic to R[Y]/(tY-1).
- 4. Let R be a ring. Suppose that, for each prime ideal \mathfrak{p} , the local ring $R_{\mathfrak{p}}$ has no nilpotent element $\neq 0$.
 - (a) Show that R has no nonzero nilpotent element.
 - (b) If each $R_{\mathfrak{p}}$ is an integral domain, is R necessarily an integral domain?
- 5. Prove that for any ideal $\mathfrak{a} \subset R$, we have $\operatorname{Rad}(\mathfrak{a})/\mathfrak{a} = \operatorname{rad}(R/\mathfrak{a})$.

- *6. For every element f of a ring R let D_f denote the complement of V(f) in X := Spec R. The sets D_f are called *basic open sets* of X. Show that
 - (a) The basic open sets form a basis of the Zariski topology.
 - (b) $D_f \cap D_g = D_{fg}$.
 - (c) $D_f = \emptyset$ if and only if f is nilpotent.
 - (d) $D_f = X$ if and only if f is a unit.
 - (e) $D_f = D_g$ if and only if $\operatorname{Rad}((f)) = \operatorname{Rad}((g))$.
 - (f) X is quasi-compact, i.e., every open cover has a finite subcover.