Solutions Sheet 1

Radical ideals, Decomposition, Zariski topology

Exercises 2 and 6 are taken from the book Introduction to Commutative Algebra by Atiyah and MacDonald.

1. (a) Show that if \mathfrak{a} is an ideal in a ring R and $\operatorname{Rad}(\mathfrak{a})$ its radical ideal, then $V(\mathfrak{a})=V(\operatorname{Rad}(\mathfrak{a}))$.
(b) Show that a proper ideal $\mathfrak{p} \varsubsetneqq R$ is a prime ideal if and only if, for any ideals $\mathfrak{a}, \mathfrak{b} \subset R$ with $\mathfrak{a b} \subset \mathfrak{p}$, we have $\mathfrak{a} \subset \mathfrak{p}$ or $\mathfrak{b} \subset \mathfrak{p}$.
(c) Show that every prime ideal is radical. Find an example which shows that the converse is not true.
2. Let X be a topological space. Show that
(a) For any irreducible subspace Y of X, the closure \bar{Y} of Y in X is irreducible.
(b) Every irreducible subspace of X is contained in a maximal irreducible subspace.
(c) The maximal irreducible subspaces of X are closed and cover X. They are called the irreducible components of X.
(d) What are the irreducible components of a Hausdorff space?

Solution:

(a) By definition of \bar{Y}, any non-empty open subset of \bar{Y} has non-empty intersection with Y. From this, the statement follows immediately.
(b) This is implied through Zorn's Lemma as follows: Let Y be an irreducible subset of X. Consider the set Σ of irreducible subsets of X which contain Y. It is partially ordered through the inclusion relation. We have $\Sigma \neq \varnothing$, as $Y \in \Sigma$. We claim that for any chain $\left(Y_{i}\right)_{i \in I}$ in Σ, the union $\tilde{Y}:=\bigcup_{i \in I} Y_{i}$ is in Σ, and therefore is an upper bound for $\left(Y_{i}\right)_{i \in I}$. Indeed, assume U, U^{\prime} are nonempty open subsets of \tilde{Y}. There must thus exist $i_{1}, i_{2} \in I$ with $U \cap Y_{i_{1}} \neq \varnothing$ and $U^{\prime} \cap Y_{i_{2}} \neq \varnothing$. Without loss of generality $Y_{i_{2}} \subset Y_{i_{1}}$. As $Y_{i_{1}}$ is irreducible, we find $\left(U \cap Y_{i_{1}}\right) \cap\left(U^{\prime} \cap Y_{i_{1}}\right) \neq \varnothing$ and in particular $U \cap U^{\prime} \neq \varnothing$. Hence $\tilde{Y} \in M$. This guarantees, by Zorn's Lemma, a maximal element in Σ, which is precisely a maximal irreducible subset of X containing Y.
(c) They are closed by (a). They cover X because each element of X forms an irreducible subset and is thus contained in an irreducible component by (b).
(d) The irreducible components of a Hausdorff space are the one point subsets.
3. Determine the ideal in $\mathbb{R}[\underline{X}]$ of
(a) the union of the three coordinate axes in \mathbb{R}^{3},
(b) the union of the lines containing the twelve edges of the cube in \mathbb{R}^{3} with vertices $(\pm 1, \pm 1, \pm 1)$,
(c) the set $\left\{\left(n, e^{n}\right) \mid n \in \mathbb{Z}^{\geqslant 0}\right\}$ in \mathbb{R}^{2}.

Solution (Sketch):
(a) The corresponding ideal is

$$
(Y, Z) \cap(X, Z) \cap(X, Y)=(X Y, Z) \cap(X, Y)=(X Y, X Z, Y Z) .
$$

(b) The ideal is the intersection of the twelve ideals $(X \pm 1, Y \pm 1),(X \pm 1, Z \pm 1)$ and $(Y \pm 1, Z \pm 1)$, which is

$$
\left(\left(X^{2}-1\right)\left(Y^{2}-1\right),\left(X^{2}-1\right)\left(Z^{2}-1\right),\left(Y^{2}-1\right)\left(Z^{2}-1\right)\right)
$$

(c) The ideal of the set $X:=\left\{\left(n, e^{n}\right) \mid n \in \mathbb{Z}^{\geqslant 0}\right\}$ is the zero ideal. Equivalently, for any non-zero polynomial $f \in \mathbb{R}[X, Y]$, there exists an integer $n \geqslant 0$ with $f\left(n, e^{n}\right) \neq 0$. To see this write $f=\sum_{k=0}^{d} f_{k} Y^{k}$ with $f_{i} \in \mathbb{R}[X]$ and $f_{d} \neq 0$. Then by looking at growth rates find that $\left|f_{d}(n) e^{d n}\right|>\left|\sum_{k=0}^{d-1} f_{k}(n) e^{k n}\right|$ and hence $f\left(n, e^{n}\right) \neq 0$ for all $n \gg 0$.
4. Compute the irreducible components of $V\left(X Z-Y^{2}, X^{3}-Y Z\right)$ in \mathbb{C}^{3}.

Solution (Sketch): The irreducible components are the Z-axis, with ideal (X, Y), and the curve

$$
V\left(Y^{2}-X Z, X^{2} Y-Z^{2}, X^{3}-Y Z\right)=\left\{\left(t^{3}, t^{4}, t^{5}\right) \mid t \in \mathbb{C}\right\}
$$

*5 Show that every ring homomorphism $\varphi: R \rightarrow R^{\prime}$ induces a continuous map $\operatorname{Spec} R^{\prime} \rightarrow \operatorname{Spec} R, \mathfrak{p} \mapsto \varphi^{-1}(\mathfrak{p})$.
6. Let \mathfrak{p} and \mathfrak{q} be prime ideals of a ring R. Show that
(a) the set $\{\mathfrak{p}\}$ is closed in $\operatorname{Spec} R$ if and only if \mathfrak{p} is maximal. In that case we call \mathfrak{p} a closed point.
(b) $\overline{\{\mathfrak{p}\}}=V(\mathfrak{p})$.
(c) $\mathfrak{q} \in \overline{\{\mathfrak{p}\}} \Longleftrightarrow \mathfrak{p} \subset \mathfrak{q}$.
(d) $\operatorname{Spec} R$ is a T_{0}-space, i.e., for any distinct points $\mathfrak{p}, \mathfrak{q}$ of $\operatorname{Spec} R$, there exists a neighborhood of \mathfrak{p} which does not contain \mathfrak{q}, or a neighborhood of \mathfrak{q} which does not contain \mathfrak{p}.

Solution:

(a) By definition of the Zariski topology, the set $\{\mathfrak{p}\}$ is closed if and only if $\{\mathfrak{p}\}=V(S)$ for some subset $S \subset R$, hence if and only if \mathfrak{p} is the only prime ideal containing S. Since every prime ideal is contained in a maximal ideal, which is also prime, we conclude this is the case if and only if \mathfrak{p} is maximal.
(b) $\overline{\{p\}}=\bigcap_{\substack{S \subset R \\ \mathfrak{p} \in V(S)}} V(S)=\bigcap_{\substack{S \subset R \\ \mathfrak{p} \supset S}} V(S)=V\left(\bigcup_{\substack{S \subset R \\ \mathfrak{p} \supset S}} S\right)=V(\mathfrak{p})$
(c) This is immediate from (b) and the definition of $V(\mathfrak{p})$.
(d) Let \mathfrak{p} and \mathfrak{q} be distinct prime ideals of R. Then we cannot have both $\mathfrak{p} \subset \mathfrak{q}$ and $\mathfrak{q} \subset \mathfrak{p}$. In the case $\mathfrak{p} \not \subset \mathfrak{q}$ we have $\mathfrak{q} \notin V(\mathfrak{p}) \ni \mathfrak{p}$; hence $X \backslash V(\mathfrak{p})$ is an open neighborhood of \mathfrak{q} which does not contain \mathfrak{p}. Similarly, if $\mathfrak{q} \not \subset \mathfrak{p}$, then $X \backslash V(\mathfrak{q})$ is an open neighborhood of \mathfrak{p} which does not contain \mathfrak{q}.

