Solutions Sheet 1

RADICAL IDEALS, DECOMPOSITION, ZARISKI TOPOLOGY

Exercises 2 and 6 are taken from the book *Introduction to Commutative Algebra* by Atiyah and MacDonald.

- 1. (a) Show that if \mathfrak{a} is an ideal in a ring R and $\operatorname{Rad}(\mathfrak{a})$ its radical ideal, then $V(\mathfrak{a}) = V(\operatorname{Rad}(\mathfrak{a})).$
 - (b) Show that a proper ideal $\mathfrak{p} \subsetneq R$ is a prime ideal if and only if, for any ideals $\mathfrak{a}, \mathfrak{b} \subset R$ with $\mathfrak{ab} \subset \mathfrak{p}$, we have $\mathfrak{a} \subset \mathfrak{p}$ or $\mathfrak{b} \subset \mathfrak{p}$.
 - (c) Show that every prime ideal is radical. Find an example which shows that the converse is *not* true.
- 2. Let X be a topological space. Show that
 - (a) For any irreducible subspace Y of X, the closure \overline{Y} of Y in X is irreducible.
 - (b) Every irreducible subspace of X is contained in a maximal irreducible subspace.
 - (c) The maximal irreducible subspaces of X are closed and cover X. They are called the *irreducible components* of X.
 - (d) What are the irreducible components of a Hausdorff space?

Solution:

- (a) By definition of \overline{Y} , any non-empty open subset of \overline{Y} has non-empty intersection with Y. From this, the statement follows immediately.
- (b) This is implied through Zorn's Lemma as follows: Let Y be an irreducible subset of X. Consider the set Σ of irreducible subsets of X which contain Y. It is partially ordered through the inclusion relation. We have $\Sigma \neq \emptyset$, as $Y \in \Sigma$. We claim that for any chain $(Y_i)_{i \in I}$ in Σ , the union $\tilde{Y} := \bigcup_{i \in I} Y_i$ is in Σ , and therefore is an upper bound for $(Y_i)_{i \in I}$. Indeed, assume U, U' are nonempty open subsets of \tilde{Y} . There must thus exist $i_1, i_2 \in I$ with $U \cap Y_{i_1} \neq \emptyset$ and $U' \cap Y_{i_2} \neq \emptyset$. Without loss of generality $Y_{i_2} \subset Y_{i_1}$. As Y_{i_1} is irreducible, we find $(U \cap Y_{i_1}) \cap (U' \cap Y_{i_1}) \neq \emptyset$ and in particular $U \cap U' \neq \emptyset$. Hence $\tilde{Y} \in M$. This guarantees, by Zorn's Lemma, a maximal element in Σ , which is precisely a maximal irreducible subset of X containing Y.
- (c) They are closed by (a). They cover X because each element of X forms an irreducible subset and is thus contained in an irreducible component by (b).
- (d) The irreducible components of a Hausdorff space are the one point subsets.

- 3. Determine the ideal in $\mathbb{R}[\underline{X}]$ of
 - (a) the union of the three coordinate axes in \mathbb{R}^3 ,
 - (b) the union of the lines containing the twelve edges of the cube in \mathbb{R}^3 with vertices $(\pm 1, \pm 1, \pm 1)$,
 - (c) the set $\{(n, e^n) \mid n \in \mathbb{Z}^{\geq 0}\}$ in \mathbb{R}^2 .

Solution (Sketch):

(a) The corresponding ideal is

$$(Y,Z) \cap (X,Z) \cap (X,Y) = (XY,Z) \cap (X,Y) = (XY,XZ,YZ).$$

(b) The ideal is the intersection of the twelve ideals $(X \pm 1, Y \pm 1), (X \pm 1, Z \pm 1)$ and $(Y \pm 1, Z \pm 1)$, which is

$$((X^2-1)(Y^2-1), (X^2-1)(Z^2-1), (Y^2-1)(Z^2-1)).$$

- (c) The ideal of the set $X := \{(n, e^n) \mid n \in \mathbb{Z}^{\geq 0}\}$ is the zero ideal. Equivalently, for any non-zero polynomial $f \in \mathbb{R}[X, Y]$, there exists an integer $n \geq 0$ with $f(n, e^n) \neq 0$. To see this write $f = \sum_{k=0}^d f_k Y^k$ with $f_i \in \mathbb{R}[X]$ and $f_d \neq 0$. Then by looking at growth rates find that $|f_d(n)e^{dn}| > |\sum_{k=0}^{d-1} f_k(n)e^{kn}|$ and hence $f(n, e^n) \neq 0$ for all $n \gg 0$.
- 4. Compute the irreducible components of $V(XZ Y^2, X^3 YZ)$ in \mathbb{C}^3 .

Solution (Sketch): The irreducible components are the Z-axis, with ideal (X, Y), and the curve

$$V(Y^2 - XZ, X^2Y - Z^2, X^3 - YZ) = \{(t^3, t^4, t^5) \mid t \in \mathbb{C}\}.$$

- *5 Show that every ring homomorphism $\varphi \colon R \to R'$ induces a continuous map $\operatorname{Spec} R' \to \operatorname{Spec} R, \mathfrak{p} \mapsto \varphi^{-1}(\mathfrak{p}).$
- 6. Let \mathfrak{p} and \mathfrak{q} be prime ideals of a ring R. Show that
 - (a) the set $\{\mathfrak{p}\}$ is closed in Spec R if and only if \mathfrak{p} is maximal. In that case we call \mathfrak{p} a *closed point*.
 - (b) $\overline{\{\mathfrak{p}\}} = V(\mathfrak{p}).$
 - (c) $\mathfrak{q} \in \overline{\{\mathfrak{p}\}} \iff \mathfrak{p} \subset \mathfrak{q}$.
 - (d) Spec R is a T_0 -space, i.e., for any distinct points $\mathfrak{p}, \mathfrak{q}$ of Spec R, there exists a neighborhood of \mathfrak{p} which does not contain \mathfrak{q} , or a neighborhood of \mathfrak{q} which does not contain \mathfrak{p} .

Solution:

(a) By definition of the Zariski topology, the set $\{\mathfrak{p}\}$ is closed if and only if $\{\mathfrak{p}\} = V(S)$ for some subset $S \subset R$, hence if and only if \mathfrak{p} is the only prime ideal containing S. Since every prime ideal is contained in a maximal ideal, which is also prime, we conclude this is the case if and only if \mathfrak{p} is maximal.

(b)
$$\overline{\{p\}} = \bigcap_{\substack{S \subset R\\ \mathfrak{p} \in V(S)}} V(S) = \bigcap_{\substack{S \subset R\\ \mathfrak{p} \supset S}} V(S) = V(\bigcup_{\substack{S \subset R\\ \mathfrak{p} \supset S}} S) = V(\mathfrak{p})$$

- (c) This is immediate from (b) and the definition of $V(\mathbf{p})$.
- (d) Let \mathfrak{p} and \mathfrak{q} be distinct prime ideals of R. Then we cannot have both $\mathfrak{p} \subset \mathfrak{q}$ and $\mathfrak{q} \subset \mathfrak{p}$. In the case $\mathfrak{p} \not\subset \mathfrak{q}$ we have $\mathfrak{q} \not\in V(\mathfrak{p}) \ni \mathfrak{p}$; hence $X \smallsetminus V(\mathfrak{p})$ is an open neighborhood of \mathfrak{q} which does not contain \mathfrak{p} . Similarly, if $\mathfrak{q} \not\subset \mathfrak{p}$, then $X \smallsetminus V(\mathfrak{q})$ is an open neighborhood of \mathfrak{p} which does not contain \mathfrak{q} .