Mathematical Finance Exercise Sheet 10

Submit by 12:00 on Wednesday, December 4 via the course homepage.

Exercise 10.1 (Construction of ζ) Let $S = (S_t)_{0 \leq t \leq T}$ be an RCLL process with $S_0 = 0$.

(a) Assume S is locally bounded, so that there exists a sequence $(\tau_n)_{n\in\mathbb{N}}$ of stopping times increasing stationarily to T with S^{τ_n} bounded for each n. Show that there exists a strictly positive predictable process $\zeta \in L(S)$ such the random variable

$$(\zeta \bullet S)_T^* := \sup_{0 \leqslant t \leqslant T} |\zeta \bullet S_t|$$

is bounded.

(b) Assume instead that S is a σ -martingale. Show that there exists a strictly positive predictable process $\zeta \in L(S)$ such the $(\zeta \bullet S)_T^*$ is integrable.

Exercise 10.2 (Sum of σ -martingales is a σ -martingale) Let S^1 and S^2 be σ -martingales. Show that the sum $S^1 + S^2$ is again a σ -martingale.

Exercise 10.3 (Density of $\mathbb{P}_{e,\sigma}$ in $\mathbb{P}_{a,\sigma}$) Let $S = (S_t)_{0 \le t \le T}$ be a *P*-semimartingale. Recall the set $\mathbb{P}_{a,\sigma}(S)$ defined by

$$\mathbb{P}_{\mathbf{a},\sigma}(S) := \{ Q \ll P \text{ on } \mathcal{F}_T : S \text{ is a } Q \text{-}\sigma \text{-martingale} \}.$$

- (a) Show that the sets $\mathbb{P}_{a,\sigma}(S)$ and $\mathbb{P}_{e,\sigma}(S)$ are convex.
- (b) Assume that $\mathbb{P}_{\mathbf{e},\sigma}(S) \neq \emptyset$. Show that $\mathbb{P}_{\mathbf{e},\sigma}(S)$ is $L^1(P)$ -dense in $\mathbb{P}_{\mathbf{a},\sigma}(S)$, in the sense that for each measure $Q \in \mathbb{P}_{\mathbf{a},\sigma}(S)$, there is a sequence $(Q^n)_{n \in \mathbb{N}} \subseteq \mathbb{P}_{\mathbf{e},\sigma}(S)$ such that $Z^n \to Z$ in $L^1(P)$, where Z^n and Z denote the densities of Q^n and Q with respect to P, respectively.