Mathematical Finance Exercise Sheet 12

Submit by 12:00 on Wednesday, December 18 via the [course homepage.](https://metaphor.ethz.ch/x/2024/hs/401-4889-00L/)

Exercise 12.1 *(Some properties of u)* Let $U : (0, \infty) \to \mathbb{R}$ be a concave and increasing function. Define the function $u : (0, \infty) \to (-\infty, +\infty]$ by

$$
u(x) := \sup_{V \in \mathcal{V}(x)} E[U(V_T)],
$$

where $V(x) := \{x + G(\vartheta) : \vartheta \in \Theta_{\text{adm}}^x\}.$

- (a) Show that *u* is concave and increasing.
- (b) If additionally $u(x_0) < \infty$ for some $x_0 > 0$, show that $u(x) < \infty$ for all $x > 0$.

Exercise 12.2 *(Utility in a market with arbitrage)* Consider a general market with finite time horizon *T*. Let $U:(0,\infty) \to \mathbb{R}$ be an increasing and concave utility function. Suppose that *U* is unbounded from above and that either the market admits a 0-admissible arbitrage opportunity, or we are in finite discrete time and the market admits an (admissible) arbitrage opportunity. Show that in both cases, we have $u \equiv \infty$.

Without imposing that *U* is unbounded from above, what can you say about the relationship between $u(x)$ and $U(x)$ as $x \to \infty$?

Exercise 12.3 *(Utility in a complete market)* Consider a financial market modelled by an \mathbb{R}^d -valued semimartingale *S* satisfying NFLVR. Let $U : (0, \infty) \to \mathbb{R}$ be a utility function such that $u(x) < \infty$ for some (and hence for all) $x \in (0, \infty)$. Assume that the market is complete in the sense that there exists a unique $E\sigma MM Q$ on \mathcal{F}_T . Assume furthermore that \mathcal{F}_0 is trivial.

(a) Show that $h \leq z \frac{dQ}{dP}$ $\frac{dQ}{dP}$ *P*-a.s. for all $h \in \mathcal{D}(z)$, and deduce that

$$
j(z) = E\bigg[J\bigg(z\frac{\mathrm{d}Q}{\mathrm{d}P}\bigg)\bigg].
$$

(b) Let $z_0 := \inf\{z > 0 : j(z) < \infty\}$. Show that the function *j* defined in the lecture notes is in $C^1((z_0, \infty); \mathbb{R})$ and satisfies

$$
j'(z) = E\left[\frac{\mathrm{d}Q}{\mathrm{d}P}J'\left(z\frac{\mathrm{d}Q}{\mathrm{d}P}\right)\right], \quad z \in (z_0, \infty).
$$

Updated: December 11, 2024 $1/3$

(c) Set $x_0 := \lim_{z \downarrow z_0} (-j'(z))$ and fix $x \in (0, x_0)$. Let $z_x \in (z_0, \infty)$ be the unique number such that $-j'(z_x) = x$. Show that $f^* := I(z_x \frac{dQ}{dP})$ $\frac{dQ}{dP}$ is the unique solution to the primal problem

$$
u(x) = \sup_{f \in \mathcal{C}(x)} E[U(f)].
$$

Exercise 12.4 *(The Merton problem)* Consider the Black–Scholes market given by

$$
d\tilde{S}_0^0 = r\tilde{S}_t^0 dt, \qquad \tilde{S}_0^0 = 1,
$$

\n
$$
d\tilde{S}_t^1 = \tilde{S}_t^1 (\mu dt + \sigma dW_t), \quad \tilde{S}_0^1 = s > 0.
$$

Let $U : (0, \infty) \to \mathbb{R}$ be defined by $U(x) = \frac{1}{\gamma} x^{\gamma}$, where $\gamma \in (-\infty, 1) \setminus \{0\}$. We consider the *Merton problem* of maximising expected utility from final wealth (in units of \widetilde{S}^0).

(a) Show that for $z > 0$,

$$
j(z) = \frac{1 - \gamma}{\gamma} z^{-\frac{\gamma}{1 - \gamma}} \exp\left(\frac{1}{2} \frac{\gamma}{(1 - \gamma)^2} \frac{(\mu - r)^2 T}{\sigma^2}\right).
$$

(b) Show that the unique solution to the primal problem

$$
u(x) = \sup_{f \in \mathcal{C}(x)} E[U(f)], \quad x \in (0, \infty),
$$

is given by $f_x^* := x\mathcal{E}(\frac{1}{1-x})$ $1-\gamma$ $\frac{\mu-r}{\sigma}R$)_{*T*}, where the process $R = (R_t)_{0 \leq t \leq T}$ is defined by $R_t = W_t + \frac{\mu - r}{\sigma}$ *σ t*.

(c) Deduce that $f_x^* = V_T(x, \vartheta^x)$, where the integrand $\vartheta^x = (\vartheta^x_t)_{0 \le t \le T}$ is given by

$$
\vartheta_t^x = \frac{x}{S_t^1} \frac{1}{1 - \gamma} \frac{\mu - r}{\sigma^2} \mathcal{E} \left(\frac{1}{1 - \gamma} \frac{\mu - r}{\sigma} R \right)_t, \quad x \in (0, \infty),
$$

and show that

$$
u(x) = \frac{x^{\gamma}}{\gamma} \exp\left(\frac{1}{2}\frac{\gamma}{1-\gamma}\frac{(\mu-r)^2}{\sigma^2}T\right), \quad x \in (0, \infty).
$$

(d) For any *x*-admissible ϑ with $V(x, \vartheta) > 0$, denote by

$$
\pi_t := \frac{\vartheta_t S_t^1}{V_t(x,\vartheta)}
$$

the fraction of wealth that is invested in the stock. Show that the optimal strategy ϑ^x is given by the *Merton proportion*

$$
\pi_t^* = \frac{1}{1 - \gamma} \frac{\mu - r}{\sigma^2}.
$$

Updated: December 11, 2024 $\sqrt{3}$

Exercise 12.5 $\left(\frac{d\hat{P}}{dP}\right)$ $\frac{dP}{dP}$ has moments of all orders) Let *S* be a continuous real-valued semimartingale satisfying the structure condition (SC), i.e. there exist a continuous local martingale M null at zero and a predictable process λ such that

$$
S = S_0 + M + \int \lambda \, \mathrm{d}\langle M \rangle,
$$

and with the mean-variance tradeoff process $K = \int \lambda^2 d\langle M \rangle$ bounded. Now define $\hat{Z} := \mathcal{E}(-\lambda \bullet M)$ and $\frac{\mathrm{d}\hat{P}}{\mathrm{d}P} := \hat{Z}_T$.

- (a) Show that $\hat{P} \in \mathbb{P}_{e,\text{loc}}(S)$.
- (b) Show that both $\frac{d\hat{P}}{d\hat{P}}$ and $\frac{dP}{d\hat{P}}$ have moments of all orders.