Mathematical Finance Exercise Sheet 5

Submit by 12:00 on Wednesday, October 30 via the course homepage.

Exercise 5.1 (Convergence in probability) Consider the metric d on L^0 defined by $d(X,Y) := E[1 \land |X - Y|]$. Show that for $X_n, X \in L^0$, we have

 $X_n \to X$ in probability $\iff d(X_n, X) \to 0.$

Exercise 5.2 (Good integrator) Fix a finite time horizon T > 0, a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F} = (\mathcal{F}_t)_{0 \leq t \leq T}$, and an adapted RCLL process $X = (X_t)_{0 \leq t \leq T}$. Show that X is a good integrator if and only if the set

$$\mathfrak{X}_{(1)} := \{ H \bullet X_T : H \in \mathbf{b}\mathcal{E}, \|H\|_{\infty} \leq 1 \}$$

is bounded in L^0 , in the sense that $\lim_{n\to\infty} \sup_{Y\in\mathfrak{X}_{(1)}} P[|Y| \ge n] = 0.$

Recall that X is a good integrator if whenever $H^n, H \in b\mathcal{E}$ with $H^n \to H$ uniformly in (ω, t) , we have $H^n \bullet X_T \to H \bullet X_T$ in L^0 .

Exercise 5.3 (The spaces \mathbb{L} and \mathbb{D}) Fix a finite time horizon T > 0 and a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F} = (\mathcal{F}_t)_{0 \leq t \leq T}$ is assumed to be complete. Let \mathbb{L} and \mathbb{D} denote the spaces of adapted LCRL and adapted RCLL processes, respectively. Define the metric

$$d(X^1, X^2) := E[1 \land (X^1 - X^2)_T^*] := E\left[1 \land \sup_{0 \le s \le T} |X_s^1 - X_s^2|\right]$$

on both \mathbb{L} and \mathbb{D} (note that convergence with respect to d is exactly uniform (in t) convergence in probability). Show that when equipped with d, both \mathbb{L} and \mathbb{D} are complete metric spaces.

Hint: You may use that the space of (deterministic) LCRL (respectively RCLL) functionals on [0,T] equipped with the supremum norm is a Banach space.

Exercise 5.4 (Stopped good integrator) Show that a stopped good integrator is a good integrator. That is, if $X = (X_t)_{0 \le t \le T}$ is a good integrator and τ is a stopping time, show that X^{τ} is a good integrator.

Updated: October 30, 2024

Exercise 5.5 (Corollary 3.8) Let $\mathcal{M}_{0,\text{loc}}$ denote the space of local martingales null at zero. Show that if $M \in \mathcal{M}_{0,\text{loc}}$ then $[M]^{1/2}$ is locally integrable.

Exercise 5.6 (Approximation) Fix a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$ where \mathbb{F} is right-continuous, and let S be a semimartingale. Show in detail that for every $H \in \mathbb{L}$ such that $H_0 = 0$ almost surely, one can find a sequence $(H^n)_{n \in \mathbb{N}} \subseteq b\mathcal{E}$ with $d'_E(H^n \bullet S, H \bullet S) \to 0$ as $n \to \infty$.