Mathematical Finance Exercise Sheet 6

Submit by 12:00 on Wednesday, November 6 via the course homepage.

Exercise 6.1 (Bounded in L^0) Show that a nonempty set $C \subseteq L^0$ is bounded in L^0 if and only if for every sequence $(X_n)_{n \in \mathbb{N}} \subseteq C$ and every sequence of scalars $\lambda_n \to 0$, we have $\lambda_n X_n \to 0$ in L^0 .

Exercise 6.2 (Quadratic covariation) Recall that for a semimartingale S, the optional quadratic variation process is given by

$$[S] := S^2 - S_0^2 - 2 \int S_- \, \mathrm{d}S.$$

For two semimartingales X and Y, we define the *optional quadratic covariation* process to be

$$[X,Y] := \frac{1}{4}([X+Y] - [X-Y]).$$

Note that this definition is "consistent" with the optional quadratic variation in the sense that [X, X] = [X].

(a) Establish the integration by parts formula

$$XY = X_0Y_0 + \int X_- \,\mathrm{d}Y + \int Y_- \,\mathrm{d}X + [X, Y].$$

- (b) Show that $\Delta[X, Y] = \Delta X \Delta Y$.
- (c) Show that $\sum_{0 < t \leq T} (\Delta X_t)^2 \leq [X]_T$.

In particular, $\sum_{0 < t \leq T} (\Delta X_t)^2$ is *P*-a.s. convergent (while $\sum_{0 < t \leq T} |\Delta X_t|$ need not converge).

Exercise 6.3 (Semimartingales) Show that $X \in \mathbb{D}$ is a semimartingale if and only if $d'_E(\lambda_n X, 0) \to 0$ whenever $\lambda_n \to 0$ in \mathbb{R} .