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Exercise 12.1 (Some properties of u) Let U : (0,∞) → R be a concave and
increasing function. Define the function u : (0,∞)→ (−∞,+∞] by

u(x) := sup
V ∈V(x)

E[U(VT )],

where V(x) := {x+G(ϑ) : ϑ ∈ Θx
adm}.

(a) Show that u is concave and increasing.

(b) If additionally u(x0) <∞ for some x0 > 0, show that u(x) <∞ for all x > 0.

Solution 12.1

(a) We first prove that u is concave. Let x, y ∈ (0,∞) and λ ∈ (0, 1) be fixed. We
need to show that

u
(
λx+ (1− λ)y

)
> λu(x) + (1− λ)u(y).

First note that if either u(x) or u(y) is −∞, then the inequality holds trivially.
So assume that u(x), u(y) > −∞. Take x+G(ϑx) ∈ V(x) and y+G(ϑy) ∈ V(y)
with U(x+G(ϑx))− and U(y +G(ϑy))− both in L1. Then

λ
(
x+G(ϑx)

)
+ (1− λ)

(
y +G(ϑy)

)
= λx+ (1− λ)y +G

(
λϑx + (1− λ)ϑy

)
.

As U is concave, we have

λU
(
x+G(ϑx)

)
+(1−λ)U

(
y+G(ϑy)

)
6 U

(
λx+(1−λ)y+G

(
λϑx+(1−λ)ϑy

))
.

So also U(λx + (1 − λ)y + Gλϑx + (1 − λ)ϑy))− ∈ L1. Furthermore, since
λϑx + (1− λ)ϑy ∈ Θλx+(1−λ)y

adm , we can take expectations, which yields

λE
[
U
(
x+G(ϑx)

)]
+ (1− λ)E

[
U
(
y +G(ϑy)

)]
6 u

(
λx+ (1− λ)y

)
.

Finally, taking the supremum over all x+G(ϑx) ∈ V(x) and y +G(ϑy) ∈ V(y)
with integrable negative parts gives the required inequality.
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It remains to prove that u is increasing. This follows from the fact that
Θx

adm ⊆ Θy
adm for 0 < x < y. Indeed, for x+G(ϑx) ∈ V(x) so that ϑx ∈ Θx

adm,
we have y +G(ϑx) ∈ V(y), and as U is increasing, this implies

E
[
U
(
x+G(ϑx)

)]
6 E

[
U
(
y +G(ϑx)

)]
6 u(y).

Taking the supremum over all ϑx ∈ Θx
adm gives u(x) 6 u(y), completing the

proof.

(b) As u is increasing, we know that u(x) <∞ for all x < x0. It thus remains to
show that u(x) <∞ for all x > x0. By choosing λ ∈ (0, 1) small enough, we
can find y ∈ (0, x0) such that

x0 = λx+ (1− λ)y.

By concavity of u, we have

λu(x) + (1− λ)u(y) 6 u(x0) <∞,

which gives the result because u(y) 6 u(x0) <∞ and u(y) > U(y) > −∞.

Exercise 12.2 (Utility in a market with arbitrage) Consider a general market
with finite time horizon T . Let U : (0,∞)→ R be an increasing and concave utility
function. Suppose that U is unbounded from above and that either the market
admits a 0-admissible arbitrage opportunity, or we are in finite discrete time and the
market admits an (admissible) arbitrage opportunity. Show that in both cases, we
have u ≡ ∞.

Without imposing that U is unbounded from above, what can you say about the
relationship between u(x) and U(x) as x→∞?

Solution 12.2 By assumption, there exists ϑ ∈ Θadm such that GT (ϑ) > 0 P -a.s.
and P [GT (ϑ) > 0] > 0. By Exercise 4.2, we may assume that ϑ is 0-admissible, and
so also nϑ is 0-admissible for each n ∈ N. It follows that x + nGT (ϑ) ∈ V(x) for
every x > 0 and n ∈ N. So setting A := {GT (ϑ) > 0}, we have that for all x > 0
and n ∈ N,

u(x) > E
[
U
(
x+ nGT (ϑ)

)]
= E

[
U
(
x+ nGT (ϑ)

)
1A
]

+ E
[
U(x)1Ac

]
.

As U is increasing, we can let n→∞ and apply the monotone convergence theorem
to get that for all x > 0,

u(x) > E
[
U(∞)1A

]
+ E

[
U(x)1Ac

]
.

Note that U is increasing gives that the limit U(∞) := limx→∞ U(x) ∈ R ∪ {∞}
exists. Since U is unbounded from above we have U(∞) =∞, and as P [A] > 0, we
can conclude that u ≡ ∞, as required.
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Now suppose that U is not necessarily unbounded from above. We still have

u(x) > E
[
U(∞)1A

]
+ E

[
U(x)1Ac

]
= U(∞)P [A] + U(x)P [Ac].

Also, by the definition of u, u(x) 6 U(∞) as U is increasing. So for each x > 0,

U(∞)P [A] + U(x)P [Ac] 6 u(x) 6 U(∞).

Letting x→∞ in the above gives u(∞) = U(∞). This completes the problem.

Exercise 12.3 (Utility in a complete market) Consider a financial market modelled
by an Rd-valued semimartingale S satisfying NFLVR. Let U : (0,∞) → R be a
utility function such that u(x) <∞ for some (and hence for all) x ∈ (0,∞). Assume
that the market is complete in the sense that there exists a unique EσMM Q on FT .
Assume furthermore that F0 is trivial.

(a) Show that h 6 z dQ
dP P -a.s. for all h ∈ D(z), and deduce that

j(z) = E

[
J
(
z
dQ
dP

)]
.

(b) Let z0 := inf{z > 0 : j(z) < ∞}. Show that the function j defined in the
lecture notes is in C1((z0,∞);R) and satisfies

j′(z) = E

[
dQ
dP J

′
(
z
dQ
dP

)]
, z ∈ (z0,∞).

(c) Set x0 := limz↓z0(−j′(z)) and fix x ∈ (0, x0). Let zx ∈ (z0,∞) be the unique
number such that −j′(zx) = x. Show that f ∗ := I(zx dQ

dP ) is the unique solution
to the primal problem

u(x) = sup
f∈C(x)

E[U(f)].

Solution 12.3

For notational convenience, we denote by ZQ = (ZQ
t )06t6T the density process of Q

with respect to P , so that ZQ
T = dQ

dP .

(a) Recall that in general, a payoff H ∈ L0
+(FT ) is attainable if and only if the

supremum
sup

Q0∈Pe,σ

EQ0 [H]

is finite and attained at some Q∗ ∈ Pe,σ. In our setting, Pe,σ is the singleton
set {Q}, so that a payoff H ∈ L0

+(FT ) is attainable if and only if EQ[H] <∞,
i.e. if and only if H ∈ L1

+(Q,FT ).
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Now we recall that

D(z) := {h ∈ L0
+(FT ) : ∃Z ∈ Z(z) with h 6 ZT}.

So take h ∈ D(z) and suppose for contradiction that we do not have h 6 zZQ
T

P -a.s. Then setting A := {h > zZQ
T }, we have P [A] > 0. Now define the

process M = (Mt)06t6T by

Mt := EQ[1A | Ft].

Then M is a nonnegative Q-martingale with M0 = Q[A] > 0 because Q ≈ P .
Since EQ[MT ] 6 1 < ∞, it follows that MT ∈ L0

+(FT ) is attainable so that
there exists some ϑ ∈ Θadm with

M = M0 +G(ϑ).

Since M is nonnegative, we must have ϑ ∈ ΘM0
adm and hence M ∈ V(M0).

Now, since h ∈ D(z), there exists Z ∈ Z(z) such that h 6 ZT . By the definition
of Z(z), the product ZM is a P -supermartingale. We thus have

E[hMT ] 6 E[ZTMT ] 6 E[Z0M0] = zM0.

Also, we have E[zZQ
TMT ] = EQ[zMT ] = zM0, and thus

E
[(
h− zZQ

T

)
MT

]
6 0.

But recalling MT = 1A and P [A] > 0 gives

E
[(
h− zZQ

T

)
MT

]
> 0,

which gives a contradiction. Hence we must have h 6 zZQ
T P -a.s., as required.

In particular, as any ZT ∈ D(z) for Z ∈ Z(z), this gives ZT 6 zZQ
T for any

Z ∈ Z(z).

It remains to show j(z) = E[J(zZQ
T )]. First we recall that

j(z) := inf
Z∈Z(z)

E[J(ZT )].

For each Z ∈ Z(z) we have ZT 6 zZQ
T . As J is decreasing, we have

J(ZT ) > J
(
zZQ

T

)
,

and thus
E[J(ZT )] > E

[
J
(
zZQ

T

)]
.

Taking the infimum over all Z ∈ Z(z) gives

j(z) > E
[
J
(
zZQ

T

)]
.

As zZQ
T ∈ Z(z), this concludes the proof.
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(b) Note that 0 6 z0 <∞ by Theorem 12.4, and also by Theorem 12.4, we have
that j(z) <∞ for z ∈ (z0,∞).

Now recall that J is in C1 and strictly decreasing. We can thus define the
function g : (z0,∞)→ [−∞, 0] by

g(s) := E[ZQ
T J
′(sZQ

T )].

Moreover, as J is also strictly convex, J ′ is increasing, and thus g is also
increasing since ZQ

T > 0. As g is negative-valued, it follows from the dominated
convergence theorem that if g(s0) > −∞ for some s0 > z0, we have that g is
continuous on (s0,∞).

Next, since d
dsJ(sZQ

T ) = ZQ
T J
′(sZQ

T ) by the chain rule, we have by the funda-
mental theorem of calculus that for z0 < z1 < z2 <∞,

J(z2Z
Q
T )− J(z1Z

Q
T ) =

∫ z2

z1
ZQ
T J
′(sZQ

T ) ds.

By part (a), we know that j(z) = E[J(zZQ
T )]. Thus taking expectations of

both sides in the above gives

j(z2)− j(z1) = E
[∫ z2

z1
ZQ
T J
′(sZQ

T ) ds
]

=
∫ z2

z1
E[ZQ

T J
′(sZQ

T )] ds =
∫ z2

z1
g(s) ds,

where the second step uses the Fubini–Tonelli theorem, keeping in mind that
the integrand is strictly negative.

Note that by the definition of z0, we have that j(z2)− j(z1) is finite, and thus
the function g is finite a.e. on (z0,∞). From the above, we can conclude that g
is continuous and finite on (z0,∞). By dividing by z2 − z1 and letting z2 → z1,
we get that

j′(z) = E[ZQ
T J
′(zZQ

T )] = g(z)
as required. Now since g is continuous on (z0,∞), we have j ∈ C1((z0,∞);R),
completing the proof.

(c) Before establishing that f ∗ is a solution to the primal problem, we first need
to check that f ∗ ∈ C(x). To this end, recall that f ∈ C(x) if and only if

sup
h∈D(1)

E[fh] 6 x.

By part (a), this is equivalent to

E[fZQ
T ] 6 x.

Now by the definition of f ∗ and I, we have

E[f ∗ZQ
T ] = E[I(zxZQ

T )ZQ
T ] = E[−J ′(zxZQ

T )ZQ
T ].
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Moreover, by part (b), we have E[ZQ
T J
′(zxZQ

T )] = j′(zx), and since −j′(zx) = x
by definition of zx, we have

E[f ∗ZQ
T ] = x

and thus in particular f ∗ ∈ C(x), as required.

Next, we establish that f ∗ is a solution to the primal problem. So fix f ∈ C(x).
We need to show that E[U(f ∗)] > E[U(f)]. We may thus assume without loss
of generality that E[U(f)] > −∞. Now since U is in C1 and strictly concave
on (0,∞), and since f ∗ > 0 P -a.s., we have

U(f)− U(f ∗) 6 U ′(f ∗)(f − f ∗),

with strict inequality on the event {f 6= f ∗}. Now note that

U ′(f ∗) = U ′
(
I(zxZQ

T )
)

= zxZ
Q
T .

Thus taking expectations of the above inequality yields

E
[
U(f)− U(f ∗)

]
6 E

[
zxZ

Q
T (f − f ∗)

]
,

and since E[ZQ
T f
∗] = x and E[ZQ

T f ] 6 x and zx > 0, we have

E[U(f)− U(f ∗)] 6 0,

and the inequality is strict when P [f 6= f ∗] > 0. It follows immediately that
f ∗ is the unique solution to the primal problem. This completes the proof.

Exercise 12.4 (The Merton problem) Consider the Black–Scholes market given
by

dS̃0
0 = rS̃0

t dt, S̃0
0 = 1,

dS̃1
t = S̃1

t (µ dt+ σ dWt), S̃1
0 = s > 0.

Let U : (0,∞)→ R be defined by U(x) = 1
γ
xγ , where γ ∈ (−∞, 1)\{0}. We consider

the Merton problem of maximising expected utility from final wealth (in units of
S̃0).

(a) Show that for z > 0,

j(z) = 1− γ
γ

z−
γ

1−γ exp
(

1
2

γ

(1− γ)2
(µ− r)2T

σ2

)
.

(b) Show that the unique solution to the primal problem

u(x) = sup
f∈C(x)

E[U(f)], x ∈ (0,∞),

is given by f ∗x := xE( 1
1−γ

µ−r
σ
R)T , where the process R = (Rt)06t6T is defined

by Rt = Wt + µ−r
σ
t.
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(c) Deduce that f ∗x = VT (x, ϑx), where the integrand ϑx = (ϑxt )06t6T is given by

ϑxt = x

S1
t

1
1− γ

µ− r
σ2 E

(
1

1− γ
µ− r
σ

R

)
t

, x ∈ (0,∞),

and show that

u(x) = xγ

γ
exp

(
1
2

γ

1− γ
(µ− r)2

σ2 T

)
, x ∈ (0,∞).

(d) For any x-admissible ϑ with V (x, ϑ) > 0, denote by

πt := ϑtS
1
t

Vt(x, ϑ)

the fraction of wealth that is invested in the stock. Show that the optimal
strategy ϑx is given by the Merton proportion

π∗t = 1
1− γ

µ− r
σ2 .

Solution 12.4

(a) In the Black–Scholes model, there exists a unique EMM Q, and thus Exercise
12.3(a) is applicable. We hence have

j(z) = E

[
J

(
z
dQ
dP

)]
.

To compute this, we start by writing

J(y) = sup
x>0

(
U(x)− xy

)
= sup

x>0

(
1
γ
xγ − xy

)
.

Taking the derivative of 1
γ
xγ −xy with respect to x and setting it equal to zero,

we get x = y
1

γ−1 , and hence

J(y) = 1
γ
y

γ
γ−1 − y

γ
γ−1 = 1− γ

γ
y

γ
γ−1 .

We also recall that in the Black–Scholes model,

dQ
dP = E(−λW )T ,
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where λ := µ−r
σ
. So we have

j(z) = E

[
J

(
z
dQ
dP

)]

= 1− γ
γ

z
γ
γ−1E

[
E(−λW )

γ
γ−1
T

]

= 1− γ
γ

z
γ
γ−1E

[
exp

(
λγ

1− γWT −
1
2
λ2γ

γ − 1T
)]

= 1− γ
γ

z
γ
γ−1 exp

(
−1

2
λ2γ

γ − 1T
)
E

[
E
(

λγ

1− γW
)
T

]

= 1− γ
γ

z
γ
γ−1 exp

(
1
2

λ2γ

(1− γ)2T

)
,

where in the last step we use that E(aW ) is a P -martingale for each a ∈ R.
Substituting λ = µ−r

σ
then gives the result.

(b) First, note that j(z) <∞ for some z ∈ (0,∞) implies that
u(x) 6 j(z) + zx <∞, x ∈ (0,∞).

We computed J(z) = 1−γ
γ
z−

γ
1−γ , and hence J ′(z) = −z−

1
1−γ . Now fix x > 0.

With the same notation as in Exercise 12.3, we have

f ∗x = −J ′
(
zx
dQ

dP

)
= z

− 1
1−γ

x

(
E(−λW )T

)− 1
1−γ

= −j′(zx) exp
(
−1

2
λ2γ

(1− γ)2T

)
exp

(
λ

1− γWT + 1
2

λ2

1− γT
)

= x exp
(

λ

1− γ (WT + λT )− 1
2

λ2

(1− γ)2T

)

= xE
(

λ

1− γR
)
T

.

This completes the proof.

(c) Fix x > 0. By the definition of the stochastic exponential and using that
λ = µ−r

σ
, we have

f ∗x = x

(
1 +

∫ T

0
E
(

λ

1− γR
)
t

λ

1− γ dRt

)

= x+
∫ T

0
xE

(
λ

1− γR
)
t

λ

1− γ
1
σS1

t

dS1
t

= x+
∫ T

0
xE

(
1

1− γ
µ− r
σ

R

)
t

1
1− γ

µ− r
σ

1
σS1

t

dS1
t

= x+
∫ T

0

x

S1
t

1
1− γ

µ− r
σ2 E

(
1

1− γ
µ− r
σ

R

)
t

dS1
t .
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This gives the first claim. Now using again that E(aW ) is a P -martingale for
all a ∈ R and that λ = µ−r

σ
, we have

u(x) = E [U(f ∗x)] = xγ

γ
E

[(
E
(

λ

1− γR
)
T

)γ]

= xγ

γ
E

[
exp

(
λγ

1− γ (WT + λT )− 1
2

λ2γ

(1− γ)2T

)]

= xγ

γ
exp

(
1
2
λ2γ

1− γT
)
E

[
E
(

λγ

1− γW
)
T

]

= xγ

γ
exp

(
1
2
λ2γ

1− γT
)

= xγ

γ
exp

(
1
2

γ

1− γ
(µ− r)2

σ2 T

)
.

This completes the proof.

(d) By part (b) and since λ = µ−r
σ
, we have

Vt(x, ϑx) = xE
(

1
1− γ

µ− r
σ

R

)
t

,

and by part (c), we have

ϑxt = x

S1
t

1
1− γ

µ− r
σ2 E

(
1

1− γ
µ− r
σ

R

)
t

.

Therefore, we obtain directly that

π∗t := ϑxt S
1
t

Vt(x, ϑx)
= 1

1− γ
µ− r
σ2 .

This completes the proof.

Exercise 12.5 ( dP̂
dP has moments of all orders) Let S be a continuous real-valued

semimartingale satisfying the structure condition (SC), i.e. there exist a continuous
local martingale M null at zero and a predictable process λ such that

S = S0 +M +
∫
λ d〈M〉,

and with the mean-variance tradeoff process K =
∫
λ2 d〈M〉 bounded. Now define

Ẑ := E(−λ •M) and dP̂
dP := ẐT .

(a) Show that P̂ ∈ Pe,loc(S).
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(b) Show that both dP̂
dP and dP

dP̂ have moments of all orders.

Solution 12.5

(a) We need to show that P̂ is an equivalent probability measure, and that S is a
P̂ -local martingale. To this end, first note that since K is bounded, we have
that

E
[
exp

(1
2〈−λ •M〉T

)]
= E

[
exp

(1
2KT

)]
<∞.

So by Novikov’s condition, we can conclude that Ẑ is a martingale. As Ẑ is
strictly positive, it follows that P̂ is an equivalent probability measure. It now
remains to show that S is a P̂ -local martingale. To this end, we first apply the
stochastic product rule to ẐS and write

d(ẐS) = Ẑ dS + S dẐ + d〈Ẑ, S〉.

Then we use that S satisfies (SC) and that

dẐ = dE(−λ •M) = E(−λ •M) d(−λ •M) = −λE(−λ •M) dM = −λẐ dM

to compute

d(ẐS) = Ẑ dM + Ẑλ d〈M〉 − SλẐ dM − λẐ d 〈M〉
= (Ẑ − SλẐ) dM.

As Ẑ, S and M are continuous, it follows that ẐS is a P -local martingale, so
that S is a P̂ -local martingale, and hence P̂ ∈ Pe,loc, as required.

(b) We compute, for any p ∈ R,

Ẑp
T = exp

(
− pλ •MT −

1
2pλ

2 • 〈M〉T
)

= exp
(
− pλ •MT −

1
2p

2λ2 • 〈M〉T
)

exp
(

1
2(p2 − p)λ2 • 〈M〉T

)
= E(−pλ •M)T exp

(
(p2 − p)KT

)
.

So letting C <∞ be a bound on K, we can write

E[Ẑp
T ] 6 E[E(−pλ •M)T ] exp(C|p2 − p|) 6 exp(C|p2 − p|) <∞,

since E(−pλ •M) is a supermartingale. As ZT = dP̂
dP and Z−1

T = dP
dP̂ , this

completes the proof.
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