Mathematical Finance Exercise Sheet 12

Submit by 12:00 on Wednesday, December 18 via the course homepage.

Exercise 12.1 (Some properties of u) Let $U : (0, \infty) \to \mathbb{R}$ be a concave and increasing function. Define the function $u : (0, \infty) \to (-\infty, +\infty]$ by

$$u(x) := \sup_{V \in \mathcal{V}(x)} E[U(V_T)],$$

where $\mathcal{V}(x) := \{x + G(\vartheta) : \vartheta \in \Theta_{\mathrm{adm}}^x\}.$

- (a) Show that u is concave and increasing.
- (b) If additionally $u(x_0) < \infty$ for some $x_0 > 0$, show that $u(x) < \infty$ for all x > 0.

Solution 12.1

(a) We first prove that u is concave. Let $x, y \in (0, \infty)$ and $\lambda \in (0, 1)$ be fixed. We need to show that

$$u(\lambda x + (1 - \lambda)y) \ge \lambda u(x) + (1 - \lambda)u(y).$$

First note that if either u(x) or u(y) is $-\infty$, then the inequality holds trivially. So assume that $u(x), u(y) > -\infty$. Take $x + G(\vartheta^x) \in \mathcal{V}(x)$ and $y + G(\vartheta^y) \in \mathcal{V}(y)$ with $U(x + G(\vartheta^x))^-$ and $U(y + G(\vartheta^y))^-$ both in L^1 . Then

$$\lambda \Big(x + G(\vartheta^x) \Big) + (1 - \lambda) \Big(y + G(\vartheta^y) \Big) = \lambda x + (1 - \lambda) y + G\Big(\lambda \vartheta^x + (1 - \lambda) \vartheta^y \Big).$$

As U is concave, we have

$$\lambda U \Big(x + G(\vartheta^x) \Big) + (1 - \lambda) U \Big(y + G(\vartheta^y) \Big) \leqslant U \Big(\lambda x + (1 - \lambda) y + G \Big(\lambda \vartheta^x + (1 - \lambda) \vartheta^y \Big) \Big).$$

So also $U(\lambda x + (1 - \lambda)y + G\lambda\vartheta^x + (1 - \lambda)\vartheta^y))^- \in L^1$. Furthermore, since $\lambda\vartheta^x + (1 - \lambda)\vartheta^y \in \Theta_{\text{adm}}^{\lambda x + (1 - \lambda)y}$, we can take expectations, which yields

$$\lambda E\Big[U\Big(x+G(\vartheta^x)\Big)\Big]+(1-\lambda)E\Big[U\Big(y+G(\vartheta^y)\Big)\Big]\leqslant u\Big(\lambda x+(1-\lambda)y\Big).$$

Finally, taking the supremum over all $x + G(\vartheta^x) \in \mathcal{V}(x)$ and $y + G(\vartheta^y) \in \mathcal{V}(y)$ with integrable negative parts gives the required inequality.

Updated: December 18, 2024

It remains to prove that u is increasing. This follows from the fact that $\Theta_{adm}^x \subseteq \Theta_{adm}^y$ for 0 < x < y. Indeed, for $x + G(\vartheta^x) \in \mathcal{V}(x)$ so that $\vartheta^x \in \Theta_{adm}^x$, we have $y + G(\vartheta^x) \in \mathcal{V}(y)$, and as U is increasing, this implies

$$E\left[U\left(x+G(\vartheta^x)\right)\right] \leqslant E\left[U\left(y+G(\vartheta^x)\right)\right] \leqslant u(y).$$

Taking the supremum over all $\vartheta^x \in \Theta^x_{adm}$ gives $u(x) \leq u(y)$, completing the proof.

(b) As u is increasing, we know that $u(x) < \infty$ for all $x < x_0$. It thus remains to show that $u(x) < \infty$ for all $x > x_0$. By choosing $\lambda \in (0, 1)$ small enough, we can find $y \in (0, x_0)$ such that

$$x_0 = \lambda x + (1 - \lambda)y.$$

By concavity of u, we have

$$\lambda u(x) + (1 - \lambda)u(y) \leqslant u(x_0) < \infty,$$

which gives the result because $u(y) \leq u(x_0) < \infty$ and $u(y) \geq U(y) > -\infty$.

Exercise 12.2 (Utility in a market with arbitrage) Consider a general market with finite time horizon T. Let $U : (0, \infty) \to \mathbb{R}$ be an increasing and concave utility function. Suppose that U is unbounded from above and that either the market admits a 0-admissible arbitrage opportunity, or we are in finite discrete time and the market admits an (admissible) arbitrage opportunity. Show that in both cases, we have $u \equiv \infty$.

Without imposing that U is unbounded from above, what can you say about the relationship between u(x) and U(x) as $x \to \infty$?

Solution 12.2 By assumption, there exists $\vartheta \in \Theta_{\text{adm}}$ such that $G_T(\vartheta) \ge 0$ *P*-a.s. and $P[G_T(\vartheta) > 0] > 0$. By Exercise 4.2, we may assume that ϑ is 0-admissible, and so also $n\vartheta$ is 0-admissible for each $n \in \mathbb{N}$. It follows that $x + nG_T(\vartheta) \in \mathcal{V}(x)$ for every x > 0 and $n \in \mathbb{N}$. So setting $A := \{G_T(\vartheta) > 0\}$, we have that for all x > 0and $n \in \mathbb{N}$,

$$u(x) \ge E\Big[U\Big(x + nG_T(\vartheta)\Big)\Big] = E\Big[U\Big(x + nG_T(\vartheta)\Big)\mathbf{1}_A\Big] + E\Big[U(x)\mathbf{1}_{A^c}\Big].$$

As U is increasing, we can let $n \to \infty$ and apply the monotone convergence theorem to get that for all x > 0,

$$u(x) \ge E[U(\infty)\mathbf{1}_A] + E[U(x)\mathbf{1}_{A^c}].$$

Note that U is increasing gives that the limit $U(\infty) := \lim_{x\to\infty} U(x) \in \mathbb{R} \cup \{\infty\}$ exists. Since U is unbounded from above we have $U(\infty) = \infty$, and as P[A] > 0, we can conclude that $u \equiv \infty$, as required.

Updated: December 18, 2024

Now suppose that U is not necessarily unbounded from above. We still have

$$u(x) \ge E\left[U(\infty)\mathbf{1}_A\right] + E\left[U(x)\mathbf{1}_{A^c}\right] = U(\infty)P[A] + U(x)P[A^c].$$

Also, by the definition of $u, u(x) \leq U(\infty)$ as U is increasing. So for each x > 0,

$$U(\infty)P[A] + U(x)P[A^c] \le u(x) \le U(\infty).$$

Letting $x \to \infty$ in the above gives $u(\infty) = U(\infty)$. This completes the problem.

Exercise 12.3 (Utility in a complete market) Consider a financial market modelled by an \mathbb{R}^d -valued semimartingale S satisfying NFLVR. Let $U : (0, \infty) \to \mathbb{R}$ be a utility function such that $u(x) < \infty$ for some (and hence for all) $x \in (0, \infty)$. Assume that the market is complete in the sense that there exists a unique $\mathbb{E}\sigma MM Q$ on \mathcal{F}_T . Assume furthermore that \mathcal{F}_0 is trivial.

(a) Show that $h \leq z \frac{\mathrm{d}Q}{\mathrm{d}P}$ *P*-a.s. for all $h \in \mathcal{D}(z)$, and deduce that

$$j(z) = E\left[J\left(z\frac{\mathrm{d}Q}{\mathrm{d}P}\right)\right]$$

(b) Let $z_0 := \inf\{z > 0 : j(z) < \infty\}$. Show that the function j defined in the lecture notes is in $C^1((z_0, \infty); \mathbb{R})$ and satisfies

$$j'(z) = E\left[\frac{\mathrm{d}Q}{\mathrm{d}P}J'\left(z\frac{\mathrm{d}Q}{\mathrm{d}P}\right)\right], \quad z \in (z_0,\infty).$$

(c) Set $x_0 := \lim_{z \downarrow z_0} (-j'(z))$ and fix $x \in (0, x_0)$. Let $z_x \in (z_0, \infty)$ be the unique number such that $-j'(z_x) = x$. Show that $f^* := I(z_x \frac{dQ}{dP})$ is the unique solution to the primal problem

$$u(x) = \sup_{f \in \mathcal{C}(x)} E[U(f)]$$

Solution 12.3

For notational convenience, we denote by $Z^Q = (Z_t^Q)_{0 \le t \le T}$ the density process of Q with respect to P, so that $Z_T^Q = \frac{\mathrm{d}Q}{\mathrm{d}P}$.

(a) Recall that in general, a payoff $H \in L^0_+(\mathcal{F}_T)$ is attainable if and only if the supremum

$$\sup_{Q^0 \in \mathbb{P}_{\mathbf{e},\sigma}} E_{Q^0}[H]$$

is finite and attained at some $Q^* \in \mathbb{P}_{e,\sigma}$. In our setting, $\mathbb{P}_{e,\sigma}$ is the singleton set $\{Q\}$, so that a payoff $H \in L^0_+(\mathcal{F}_T)$ is attainable if and only if $E_Q[H] < \infty$, i.e. if and only if $H \in L^1_+(Q, \mathcal{F}_T)$.

Updated: December 18, 2024

Now we recall that

$$\mathcal{D}(z) := \{ h \in L^0_+(\mathcal{F}_T) : \exists Z \in \mathcal{Z}(z) \text{ with } h \leqslant Z_T \}.$$

So take $h \in \mathcal{D}(z)$ and suppose for contradiction that we do not have $h \leq z Z_T^Q$ *P*-a.s. Then setting $A := \{h > z Z_T^Q\}$, we have P[A] > 0. Now define the process $M = (M_t)_{0 \leq t \leq T}$ by

$$M_t := E_Q[\mathbf{1}_A \mid \mathcal{F}_t].$$

Then M is a nonnegative Q-martingale with $M_0 = Q[A] > 0$ because $Q \approx P$. Since $E_Q[M_T] \leq 1 < \infty$, it follows that $M_T \in L^0_+(\mathcal{F}_T)$ is attainable so that there exists some $\vartheta \in \Theta_{\text{adm}}$ with

$$M = M_0 + G(\vartheta).$$

Since M is nonnegative, we must have $\vartheta \in \Theta_{\text{adm}}^{M_0}$ and hence $M \in \mathcal{V}(M_0)$.

Now, since $h \in \mathcal{D}(z)$, there exists $Z \in \mathcal{Z}(z)$ such that $h \leq Z_T$. By the definition of $\mathcal{Z}(z)$, the product ZM is a *P*-supermartingale. We thus have

$$E[hM_T] \leqslant E[Z_TM_T] \leqslant E[Z_0M_0] = zM_0.$$

Also, we have $E[zZ_T^Q M_T] = E_Q[zM_T] = zM_0$, and thus

$$E\left[\left(h-zZ_T^Q\right)M_T\right]\leqslant 0.$$

But recalling $M_T = \mathbf{1}_A$ and P[A] > 0 gives

$$E\left[\left(h-zZ_T^Q\right)M_T\right] > 0,$$

which gives a contradiction. Hence we must have $h \leq z Z_T^Q$ *P*-a.s., as required. In particular, as any $Z_T \in \mathcal{D}(z)$ for $Z \in \mathcal{Z}(z)$, this gives $Z_T \leq z Z_T^Q$ for any $Z \in \mathcal{Z}(z)$.

It remains to show $j(z) = E[J(zZ_T^Q)]$. First we recall that

$$j(z) := \inf_{Z \in \mathcal{Z}(z)} E[J(Z_T)]$$

For each $Z \in \mathcal{Z}(z)$ we have $Z_T \leq z Z_T^Q$. As J is decreasing, we have

$$J(Z_T) \geqslant J\left(zZ_T^Q\right),$$

and thus

$$E[J(Z_T)] \ge E\left[J\left(zZ_T^Q\right)\right]$$

Taking the infimum over all $Z \in \mathcal{Z}(z)$ gives

$$j(z) \ge E\left[J\left(zZ_T^Q\right)\right].$$

As $zZ_T^Q \in \mathcal{Z}(z)$, this concludes the proof.

Updated: December 18, 2024

(b) Note that $0 \leq z_0 < \infty$ by Theorem 12.4, and also by Theorem 12.4, we have that $j(z) < \infty$ for $z \in (z_0, \infty)$.

Now recall that J is in C^1 and strictly decreasing. We can thus define the function $g: (z_0, \infty) \to [-\infty, 0]$ by

$$g(s) := E[Z_T^Q J'(sZ_T^Q)].$$

Moreover, as J is also strictly convex, J' is increasing, and thus g is also increasing since $Z_T^Q > 0$. As g is negative-valued, it follows from the dominated convergence theorem that if $g(s_0) > -\infty$ for some $s_0 > z_0$, we have that g is continuous on (s_0, ∞) .

Next, since $\frac{d}{ds}J(sZ_T^Q) = Z_T^Q J'(sZ_T^Q)$ by the chain rule, we have by the fundamental theorem of calculus that for $z_0 < z_1 < z_2 < \infty$,

$$J(z_2 Z_T^Q) - J(z_1 Z_T^Q) = \int_{z_1}^{z_2} Z_T^Q J'(s Z_T^Q) \,\mathrm{d}s$$

By part (a), we know that $j(z) = E[J(zZ_T^Q)]$. Thus taking expectations of both sides in the above gives

$$j(z_2) - j(z_1) = E\left[\int_{z_1}^{z_2} Z_T^Q J'(sZ_T^Q) \,\mathrm{d}s\right] = \int_{z_1}^{z_2} E[Z_T^Q J'(sZ_T^Q)] \,\mathrm{d}s = \int_{z_1}^{z_2} g(s) \,\mathrm{d}s,$$

where the second step uses the Fubini–Tonelli theorem, keeping in mind that the integrand is strictly negative.

Note that by the definition of z_0 , we have that $j(z_2) - j(z_1)$ is finite, and thus the function g is finite a.e. on (z_0, ∞) . From the above, we can conclude that gis continuous and finite on (z_0, ∞) . By dividing by $z_2 - z_1$ and letting $z_2 \rightarrow z_1$, we get that

$$j'(z) = E[Z_T^Q J'(zZ_T^Q)] = g(z)$$

as required. Now since g is continuous on (z_0, ∞) , we have $j \in C^1((z_0, \infty); \mathbb{R})$, completing the proof.

(c) Before establishing that f^* is a solution to the primal problem, we first need to check that $f^* \in \mathcal{C}(x)$. To this end, recall that $f \in \mathcal{C}(x)$ if and only if

$$\sup_{h \in \mathcal{D}(1)} E[fh] \leqslant x.$$

By part (a), this is equivalent to

$$E[fZ_T^Q] \leqslant x.$$

Now by the definition of f^* and I, we have

$$E[f^*Z_T^Q] = E[I(z_x Z_T^Q) Z_T^Q] = E[-J'(z_x Z_T^Q) Z_T^Q].$$

Updated: December 18, 2024

Moreover, by part (b), we have $E[Z_T^Q J'(z_x Z_T^Q)] = j'(z_x)$, and since $-j'(z_x) = x$ by definition of z_x , we have

$$E[f^*Z_T^Q] = x$$

and thus in particular $f^* \in \mathcal{C}(x)$, as required.

Next, we establish that f^* is a solution to the primal problem. So fix $f \in \mathcal{C}(x)$. We need to show that $E[U(f^*)] \ge E[U(f)]$. We may thus assume without loss of generality that $E[U(f)] > -\infty$. Now since U is in C^1 and strictly concave on $(0, \infty)$, and since $f^* > 0$ P-a.s., we have

$$U(f) - U(f^*) \leq U'(f^*)(f - f^*),$$

with strict inequality on the event $\{f \neq f^*\}$. Now note that

$$U'(f^*) = U'\left(I(z_x Z_T^Q)\right) = z_x Z_T^Q.$$

Thus taking expectations of the above inequality yields

$$E\left[U(f) - U(f^*)\right] \leqslant E\left[z_x Z_T^Q(f - f^*)\right],$$

and since $E[Z_T^Q f^*] = x$ and $E[Z_T^Q f] \leq x$ and $z_x > 0$, we have

 $E[U(f) - U(f^*)] \leqslant 0,$

and the inequality is strict when $P[f \neq f^*] > 0$. It follows immediately that f^* is the unique solution to the primal problem. This completes the proof.

Exercise 12.4 (*The Merton problem*) Consider the Black–Scholes market given by

$$\begin{split} \mathrm{d} \tilde{S}_{0}^{0} &= r \tilde{S}_{t}^{0} \, \mathrm{d} t, & \tilde{S}_{0}^{0} &= 1, \\ \mathrm{d} \tilde{S}_{t}^{1} &= \tilde{S}_{t}^{1} (\mu \, \mathrm{d} t + \sigma \, \mathrm{d} W_{t}), & \tilde{S}_{0}^{1} &= s > 0. \end{split}$$

Let $U: (0, \infty) \to \mathbb{R}$ be defined by $U(x) = \frac{1}{\gamma}x^{\gamma}$, where $\gamma \in (-\infty, 1) \setminus \{0\}$. We consider the *Merton problem* of maximising expected utility from final wealth (in units of \widetilde{S}^{0}).

(a) Show that for z > 0,

$$j(z) = \frac{1-\gamma}{\gamma} z^{-\frac{\gamma}{1-\gamma}} \exp\left(\frac{1}{2} \frac{\gamma}{(1-\gamma)^2} \frac{(\mu-r)^2 T}{\sigma^2}\right).$$

(b) Show that the unique solution to the primal problem

$$u(x) = \sup_{f \in \mathcal{C}(x)} E[U(f)], \quad x \in (0, \infty),$$

is given by $f_x^* := x \mathcal{E}(\frac{1}{1-\gamma} \frac{\mu-r}{\sigma} R)_T$, where the process $R = (R_t)_{0 \leq t \leq T}$ is defined by $R_t = W_t + \frac{\mu-r}{\sigma} t$.

Updated: December 18, 2024

(c) Deduce that $f_x^* = V_T(x, \vartheta^x)$, where the integrand $\vartheta^x = (\vartheta_t^x)_{0 \le t \le T}$ is given by

$$\vartheta_t^x = \frac{x}{S_t^1} \frac{1}{1-\gamma} \frac{\mu-r}{\sigma^2} \mathcal{E}\left(\frac{1}{1-\gamma} \frac{\mu-r}{\sigma} R\right)_t, \quad x \in (0,\infty),$$

and show that

$$u(x) = \frac{x^{\gamma}}{\gamma} \exp\left(\frac{1}{2}\frac{\gamma}{1-\gamma}\frac{(\mu-r)^2}{\sigma^2}T\right), \quad x \in (0,\infty).$$

(d) For any x-admissible ϑ with $V(x, \vartheta) > 0$, denote by

$$\pi_t := \frac{\vartheta_t S_t^1}{V_t(x,\vartheta)}$$

the fraction of wealth that is invested in the stock. Show that the optimal strategy ϑ^x is given by the *Merton proportion*

$$\pi_t^* = \frac{1}{1-\gamma} \frac{\mu - r}{\sigma^2}.$$

Solution 12.4

(a) In the Black–Scholes model, there exists a unique EMM Q, and thus Exercise 12.3(a) is applicable. We hence have

$$j(z) = E\left[J\left(z\frac{\mathrm{d}Q}{\mathrm{d}P}\right)\right].$$

To compute this, we start by writing

$$J(y) = \sup_{x>0} \left(U(x) - xy \right) = \sup_{x>0} \left(\frac{1}{\gamma} x^{\gamma} - xy \right).$$

Taking the derivative of $\frac{1}{\gamma}x^{\gamma} - xy$ with respect to x and setting it equal to zero, we get $x = y^{\frac{1}{\gamma-1}}$, and hence

$$J(y) = \frac{1}{\gamma} y^{\frac{\gamma}{\gamma-1}} - y^{\frac{\gamma}{\gamma-1}} = \frac{1-\gamma}{\gamma} y^{\frac{\gamma}{\gamma-1}}.$$

We also recall that in the Black–Scholes model,

$$\frac{\mathrm{d}Q}{\mathrm{d}P} = \mathcal{E}(-\lambda W)_T,$$

Updated: December 18, 2024

where $\lambda := \frac{\mu - r}{\sigma}$. So we have

$$\begin{split} j(z) &= E\left[J\left(z\frac{\mathrm{d}Q}{\mathrm{d}P}\right)\right] \\ &= \frac{1-\gamma}{\gamma} z^{\frac{\gamma}{\gamma-1}} E\left[\mathcal{E}(-\lambda W)_T^{\frac{\gamma}{\gamma-1}}\right] \\ &= \frac{1-\gamma}{\gamma} z^{\frac{\gamma}{\gamma-1}} E\left[\exp\left(\frac{\lambda\gamma}{1-\gamma} W_T - \frac{1}{2}\frac{\lambda^2\gamma}{\gamma-1}T\right)\right] \\ &= \frac{1-\gamma}{\gamma} z^{\frac{\gamma}{\gamma-1}} \exp\left(-\frac{1}{2}\frac{\lambda^2\gamma}{\gamma-1}T\right) E\left[\mathcal{E}\left(\frac{\lambda\gamma}{1-\gamma}W\right)_T\right] \\ &= \frac{1-\gamma}{\gamma} z^{\frac{\gamma}{\gamma-1}} \exp\left(\frac{1}{2}\frac{\lambda^2\gamma}{(1-\gamma)^2}T\right), \end{split}$$

where in the last step we use that $\mathcal{E}(aW)$ is a *P*-martingale for each $a \in \mathbb{R}$. Substituting $\lambda = \frac{\mu - r}{\sigma}$ then gives the result.

(b) First, note that $j(z) < \infty$ for some $z \in (0, \infty)$ implies that

$$u(x) \leqslant j(z) + zx < \infty, \quad x \in (0,\infty).$$

We computed $J(z) = \frac{1-\gamma}{\gamma} z^{-\frac{\gamma}{1-\gamma}}$, and hence $J'(z) = -z^{-\frac{1}{1-\gamma}}$. Now fix x > 0. With the same notation as in Exercise 12.3, we have

$$f_x^* = -J'\left(z_x \frac{dQ}{dP}\right) = z_x^{-\frac{1}{1-\gamma}} \left(\mathcal{E}(-\lambda W)_T\right)^{-\frac{1}{1-\gamma}}$$
$$= -j'(z_x) \exp\left(-\frac{1}{2} \frac{\lambda^2 \gamma}{(1-\gamma)^2} T\right) \exp\left(\frac{\lambda}{1-\gamma} W_T + \frac{1}{2} \frac{\lambda^2}{1-\gamma} T\right)$$
$$= x \exp\left(\frac{\lambda}{1-\gamma} (W_T + \lambda T) - \frac{1}{2} \frac{\lambda^2}{(1-\gamma)^2} T\right)$$
$$= x \mathcal{E}\left(\frac{\lambda}{1-\gamma} R\right)_T.$$

This completes the proof.

(c) Fix x > 0. By the definition of the stochastic exponential and using that $\lambda = \frac{\mu - r}{\sigma}$, we have

$$f_x^* = x \left(1 + \int_0^T \mathcal{E} \left(\frac{\lambda}{1 - \gamma} R \right)_t \frac{\lambda}{1 - \gamma} dR_t \right)$$
$$= x + \int_0^T x \mathcal{E} \left(\frac{\lambda}{1 - \gamma} R \right)_t \frac{\lambda}{1 - \gamma} \frac{1}{\sigma S_t^1} dS_t^1$$
$$= x + \int_0^T x \mathcal{E} \left(\frac{1}{1 - \gamma} \frac{\mu - r}{\sigma} R \right)_t \frac{1}{1 - \gamma} \frac{\mu - r}{\sigma} \frac{1}{\sigma S_t^1} dS_t^1$$
$$= x + \int_0^T \frac{x}{S_t^1} \frac{1}{1 - \gamma} \frac{\mu - r}{\sigma^2} \mathcal{E} \left(\frac{1}{1 - \gamma} \frac{\mu - r}{\sigma} R \right)_t dS_t^1.$$

Updated: December 18, 2024

This gives the first claim. Now using again that $\mathcal{E}(aW)$ is a *P*-martingale for all $a \in \mathbb{R}$ and that $\lambda = \frac{\mu - r}{\sigma}$, we have

$$\begin{split} u(x) &= E\left[U(f_x^*)\right] = \frac{x^{\gamma}}{\gamma} E\left[\left(\mathcal{E}\left(\frac{\lambda}{1-\gamma}R\right)_T\right)^{\gamma}\right] \\ &= \frac{x^{\gamma}}{\gamma} E\left[\exp\left(\frac{\lambda\gamma}{1-\gamma}(W_T+\lambda T) - \frac{1}{2}\frac{\lambda^2\gamma}{(1-\gamma)^2}T\right)\right] \\ &= \frac{x^{\gamma}}{\gamma} \exp\left(\frac{1}{2}\frac{\lambda^2\gamma}{1-\gamma}T\right) E\left[\mathcal{E}\left(\frac{\lambda\gamma}{1-\gamma}W\right)_T\right] \\ &= \frac{x^{\gamma}}{\gamma} \exp\left(\frac{1}{2}\frac{\lambda^2\gamma}{1-\gamma}T\right) \\ &= \frac{x^{\gamma}}{\gamma} \exp\left(\frac{1}{2}\frac{\gamma}{1-\gamma}\frac{(\mu-r)^2}{\sigma^2}T\right). \end{split}$$

This completes the proof.

(d) By part (b) and since $\lambda = \frac{\mu - r}{\sigma}$, we have

$$V_t(x, \vartheta^x) = x \mathcal{E}\left(\frac{1}{1-\gamma} \frac{\mu - r}{\sigma} R\right)_t,$$

and by part (c), we have

$$\vartheta_t^x = \frac{x}{S_t^1} \frac{1}{1-\gamma} \frac{\mu-r}{\sigma^2} \mathcal{E}\left(\frac{1}{1-\gamma} \frac{\mu-r}{\sigma} R\right)_t.$$

Therefore, we obtain directly that

$$\pi_t^* := \frac{\vartheta_t^x S_t^1}{V_t(x, \vartheta^x)} = \frac{1}{1-\gamma} \frac{\mu - r}{\sigma^2}.$$

This completes the proof.

Exercise 12.5 $\left(\frac{d\hat{P}}{dP} \text{ has moments of all orders}\right)$ Let S be a continuous real-valued semimartingale satisfying the structure condition (SC), i.e. there exist a continuous local martingale M null at zero and a predictable process λ such that

$$S = S_0 + M + \int \lambda \, \mathrm{d} \langle M \rangle,$$

and with the mean-variance tradeoff process $K = \int \lambda^2 d\langle M \rangle$ bounded. Now define $\hat{Z} := \mathcal{E}(-\lambda \bullet M)$ and $\frac{d\hat{P}}{dP} := \hat{Z}_T$.

(a) Show that $\hat{P} \in \mathbb{P}_{e,\text{loc}}(S)$.

Updated: December 18, 2024

(b) Show that both $\frac{d\hat{P}}{dP}$ and $\frac{dP}{d\hat{P}}$ have moments of all orders.

Solution 12.5

(a) We need to show that \hat{P} is an equivalent probability measure, and that S is a \hat{P} -local martingale. To this end, first note that since K is bounded, we have that

$$E\left[\exp\left(\frac{1}{2}\langle -\lambda \bullet M \rangle_T\right)\right] = E\left[\exp\left(\frac{1}{2}K_T\right)\right] < \infty$$

So by Novikov's condition, we can conclude that \hat{Z} is a martingale. As \hat{Z} is strictly positive, it follows that \hat{P} is an equivalent probability measure. It now remains to show that S is a \hat{P} -local martingale. To this end, we first apply the stochastic product rule to $\hat{Z}S$ and write

$$d(\hat{Z}S) = \hat{Z} dS + S d\hat{Z} + d\langle \hat{Z}, S \rangle.$$

Then we use that S satisfies (SC) and that

$$d\hat{Z} = d\mathcal{E}(-\lambda \bullet M) = \mathcal{E}(-\lambda \bullet M) d(-\lambda \bullet M) = -\lambda \mathcal{E}(-\lambda \bullet M) dM = -\lambda \hat{Z} dM$$

to compute

$$d(\hat{Z}S) = \hat{Z} dM + \hat{Z}\lambda d\langle M \rangle - S\lambda \hat{Z} dM - \lambda \hat{Z} d\langle M \rangle$$
$$= (\hat{Z} - S\lambda \hat{Z}) dM.$$

As \hat{Z} , S and M are continuous, it follows that $\hat{Z}S$ is a P-local martingale, so that S is a \hat{P} -local martingale, and hence $\hat{P} \in \mathbb{P}_{e,\text{loc}}$, as required.

(b) We compute, for any $p \in \mathbb{R}$,

$$\hat{Z}_T^p = \exp\left(-p\lambda \bullet M_T - \frac{1}{2}p\lambda^2 \bullet \langle M \rangle_T\right)$$
$$= \exp\left(-p\lambda \bullet M_T - \frac{1}{2}p^2\lambda^2 \bullet \langle M \rangle_T\right) \exp\left(\frac{1}{2}(p^2 - p)\lambda^2 \bullet \langle M \rangle_T\right)$$
$$= \mathcal{E}(-p\lambda \bullet M)_T \exp\left((p^2 - p)K_T\right).$$

So letting $C < \infty$ be a bound on K, we can write

$$E[\hat{Z}_T^p] \leqslant E[\mathcal{E}(-p\lambda \bullet M)_T] \exp(C|p^2 - p|) \leqslant \exp(C|p^2 - p|) < \infty,$$

since $\mathcal{E}(-p\lambda \bullet M)$ is a supermartingale. As $Z_T = \frac{d\hat{P}}{dP}$ and $Z_T^{-1} = \frac{dP}{d\hat{P}}$, this completes the proof.

Updated: December 18, 2024