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Exercise 12.1 (Some properties of u) Let U : (0,00) — R be a concave and
increasing function. Define the function u : (0, 00) — (—00, +00] by

u(r) := sup E[U(Vr)],
VeV(z)

where V(z) :={z+G) : V¥ € ©F

adm J *

(a) Show that u is concave and increasing.

(b) If additionally u(zg) < oo for some xy > 0, show that u(z) < oo for all z > 0.

Solution 12.1

(a) We first prove that u is concave. Let z,y € (0,00) and A € (0,1) be fixed. We
need to show that

u(Az + (1= Ny) > () + (1= Nu(y).
First note that if either u(x) or u(y) is —oo, then the inequality holds trivially.
So assume that u(z), u(y) > —oo. Take x+G(¥*) € V(x) and y+G(¥Y) € V(y)
with U(x + G(9*))” and U(y + G(9¥¥))~ both in L'. Then
Maz+GW) + (1 =N (y+GWY) =z + (1= Ny + G + (1 — \)).
As U is concave, we have

AU (2+G(97)) + (L= MU (y+G(")) < U(Aw+(1—A)y+G(w+(1—A)ﬂy)>.

So also U(Ax + (1 — Ny + GM* + (1 — \)¥¥))~ € L. Furthermore, since
AT+ (1= MY e @jﬁ;(l_/\)y, we can take expectations, which yields

AE[U(m 4 G(W))} . A)E[U(y 4 G(ﬁy))} <u(Xe+ (1-Ay).

Finally, taking the supremum over all x + G(9¥*) € V(z) and y + G(9Y) € V(y)
with integrable negative parts gives the required inequality.
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It remains to prove that u is increasing. This follows from the fact that
0%, € OY,, for 0 <z <y. Indeed, for z + G(¥*) € V(z) so that ¥* € OF

adm adm adm»

we have y + G(V*) € V(y), and as U is increasing, this implies
B[U(z+G()] < B[U(y + GW)] < uly).

Taking the supremum over all 9* € ©%,  gives u(z) < u(y), completing the
proof.

(b) As u is increasing, we know that u(z) < oo for all x < zy. It thus remains to
show that u(z) < oo for all z > . By choosing A € (0,1) small enough, we
can find y € (0, z¢) such that

xo=Ar+ (1 = N)y.
By concavity of u, we have
Au(z) + (1 = Nu(y) < ufzo) < oo,

which gives the result because u(y) < u(xg) < oo and u(y) > U(y) > —oo.

Exercise 12.2 (Utility in a market with arbitrage) Consider a general market
with finite time horizon T'. Let U : (0,00) — R be an increasing and concave utility
function. Suppose that U is unbounded from above and that either the market
admits a 0-admissible arbitrage opportunity, or we are in finite discrete time and the
market admits an (admissible) arbitrage opportunity. Show that in both cases, we
have u = oc.

Without imposing that U is unbounded from above, what can you say about the
relationship between u(z) and U(x) as © — 007

Solution 12.2 By assumption, there exists 9 € O,q,, such that Gy () > 0 P-a.s.
and P[Gr(¥) > 0] > 0. By Exercise 4.2, we may assume that ¢ is 0-admissible, and
so also nv is 0-admissible for each n € N. It follows that x + nGr(¥) € V(z) for
every > 0 and n € N. So setting A := {G7 () > 0}, we have that for all x > 0
and n € N,

u(z) > E{U(m + nGT(ﬁ)ﬂ = E{U(m + nGT(ﬁ))lA

+ E|U(2)1].

As U is increasing, we can let n — oo and apply the monotone convergence theorem
to get that for all z > 0,

u(z) > E[U(c0)14] + E|U(x)La].

Note that U is increasing gives that the limit U(oo) := lim, ,,, U(z) € R U {oc0}
exists. Since U is unbounded from above we have U(oco) = oo, and as P[A] > 0, we
can conclude that u = oo, as required.
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Now suppose that U is not necessarily unbounded from above. We still have
u(z) > E[U(00)14] + E[U(2)1ac| = U(c0) P[A] + U(x) P[A?).
Also, by the definition of u, u(z) < U(oo) as U is increasing. So for each z > 0,
U(oco)P[A] + U(x)P[A°] < u(z) < U(o0).

Letting x — oo in the above gives u(co) = U(oo). This completes the problem.

Exercise 12.3 (Utility in a complete market) Consider a financial market modelled
by an Révalued semimartingale S satisfying NFLVR. Let U : (0,00) — R be a
utility function such that u(x) < oo for some (and hence for all) x € (0, 00). Assume
that the market is complete in the sense that there exists a unique EcMM @ on Fr.
Assume furthermore that Fy is trivial.

(a) Show that h < Z% P-a.s. for all h € D(z), and deduce that

i(z) = E[J(%ﬁ)].

(b) Let zp := inf{z > 0 : j(z) < oco}. Show that the function j defined in the
lecture notes is in C''((29, 00); R) and satisfies

j'(z)=FE [jge](zgg)] , 2 € (z,00).

(c) Set xg := lim,,,(—j'(2)) and fix x € (0,z0). Let z, € (zp,00) be the unique
number such that —j5'(z,) = z. Show that f* := I(2,3%) is the unique solution
to the primal problem

u(z) = sup E[U(f)].
fec(z)

Solution 12.3

For notational convenience, we denote by Z9 = (ZtQ )o<t<r the density process of @
with respect to P, so that Z8 = %.

(a) Recall that in general, a payoff H € LY (Fr) is attainable if and only if the
supremum
sup Ego[H]
QV€Pe 5
is finite and attained at some Q* € P.,. In our setting, P, is the singleton
set {Q}, so that a payoff H € L% (Fr) is attainable if and only if Eg[H] < oo,
i.e. if and only if H € L1 (Q, Fr).
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Now we recall that
D(z) :={h € LY (Fr): 3Z € Z(z) with h < Zr}.

So take h € D(z) and suppose for contradiction that we do not have h < szQ
P-a.s. Then setting A := {h > 2Z2}, we have P[A] > 0. Now define the
process M = (M;)o<i<T by

Mt = EQ[].A | E]

Then M is a nonnegative @-martingale with My = Q[A] > 0 because @ ~ P.
Since Eg[My] < 1 < oo, it follows that My € LY (Fr) is attainable so that
there exists some 1 € ©,4,, With

M = My + G(9).
Since M is nonnegative, we must have ¥ € O and hence M € V(M,).

adm

Now, since h € D(z), there exists Z € Z(z) such that h < Zr. By the definition
of Z(z), the product ZM is a P-supermartingale. We thus have

E[hMz] < E[ZrMz] < E[ZoMy] = =M.
Also, we have E[2Z%My| = EglzMy] = zM,, and thus
E[(h—22%) My] <0.
But recalling My = 1,4 and P[A] > 0 gives
E|(h—228) My] >0,

which gives a contradiction. Hence we must have h < ZZQQ P-a.s., as required.
In particular, as any Zp € D(z) for Z € Z(z), this gives Zp < 2Z2 for any
Z € Z(2).
It remains to show j(z) = E[J(2Z%)]. First we recall that

i(z) .= inf E|J(Z7)|.

i(z) = f E[J(Zr)]
For each Z € Z(z) we have Zr < zZ2. As J is decreasing, we have

J(Zr) = J (223),

and thus
E[J(Zr) > E[J (228)].

Taking the infimum over all Z € Z(z) gives
i(z) = E|J (227)].

As 2Z% € Z(z), this concludes the proof.
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(b) Note that 0 < zg < oo by Theorem 12.4, and also by Theorem 12.4, we have
that j(z) < oo for z € (29, 0).

Now recall that J is in C! and strictly decreasing. We can thus define the
function g : (29, 00) — [—00,0] by

9(s) := E[Z3 ] (sZ7)).

Moreover, as J is also strictly convex, J’ is increasing, and thus g is also
increasing since chg > 0. As g is negative-valued, it follows from the dominated
convergence theorem that if g(sg) > —oo for some sy > 2o, we have that g is
continuous on (g, 00).

Next, since %J(SZIQ) = Z2J'(sZ%) by the chain rule, we have by the funda-
mental theorem of calculus that for zp < z1 < 25 < o0,

J(2029) — J(2129) = / ? 29 7(s22) ds.
21

By part (a), we know that j(z) = E[J(2Z%)]. Thus taking expectations of
both sides in the above gives

z2

j(z2) —jlz1) = E [/22 Z8J (sZ2) ds} = /Z2 E[Z2J'(sZ2)]ds = / g(s)ds,

21 21 21
where the second step uses the Fubini—Tonelli theorem, keeping in mind that
the integrand is strictly negative.

Note that by the definition of zy, we have that j(z2) — j(21) is finite, and thus
the function g is finite a.e. on (zp, 00). From the above, we can conclude that g
is continuous and finite on (zg, 00). By dividing by z9 — z; and letting 2o — 21,
we get that

J'(2) = BIZFJ'(227)] = g(2)

as required. Now since g is continuous on (29, 00), we have j € C'((29, 00); R),
completing the proof.

(c) Before establishing that f* is a solution to the primal problem, we first need
to check that f* € C(z). To this end, recall that f € C(z) if and only if

sup E|[fh] < .
heD(1)

By part (a), this is equivalent to
ElfZf] < x.
Now by the definition of f* and I, we have

E[f*Z§] = Bll(2.27)Z7] = E[=J (2. 27) Z7).
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Moreover, by part (b), we have E[Z2.J(2,Z2%)] = j'(2,), and since —j'(z,) =
by definition of z,, we have

Elf'Zf] =
and thus in particular f* € C(z), as required.

Next, we establish that f* is a solution to the primal problem. So fix f € C(z).
We need to show that E[U(f*)] > E[U(f)]. We may thus assume without loss
of generality that E[U(f)] > —oo. Now since U is in C' and strictly concave
on (0,00), and since f* > 0 P-a.s., we have

UCf) =0 ST = 1),
with strict inequality on the event {f # f*}. Now note that
U'(f) = U'(1(228)) = 225,
Thus taking expectations of the above inequality yields
E[U(f) - U(f)] < E[=Z8(f - 1)
and since E[Z2f*] = z and E[Z2f] < x and z, > 0, we have
EU(f) - U()] <0,

and the inequality is strict when P[f # f*] > 0. It follows immediately that
f* is the unique solution to the primal problem. This completes the proof.

Exercise 12.4 (The Merton problem) Consider the Black—Scholes market given
by

dsSY = rSP dt, SO =1,

dS} = SH(pdt +odW,), Sp=s5>0.
Let U : (0,00) — R be defined by U(x) = %x”’, where v € (—o0,1)\{0}. We consider
the Merton problem of maximising expected utility from final wealth (in units of
S0).

(a) Show that for z > 0,

2(1=7~)2 o2

j(2) = L e
8

-y (1 y (M—T)QT)

(b) Show that the unique solution to the primal problem

u(w) = Sup E[U(f>]v S (07 OO),
feC(z)

is given by fF := xg(ﬁ“;r R)r, where the process R = (R;)o<t<r is defined
by Rt = Wt + u;rt'
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(c¢) Deduce that f} = Vp(z,9"), where the integrand % = (V7 )o<i<r is given by

N S 1 p—r
ﬁt_Stll—’y p 5(1_7 . R)t, z € (0, 00),

and show that

v 1 — )2

(d) For any z-admissible ¢ with V(x,d) > 0, denote by

. 0iS
T V()

the fraction of wealth that is invested in the stock. Show that the optimal
strategy ¥* is given by the Merton proportion

. 1 pu—r
T, = .
Eol—y o2

Solution 12.4

(a) In the Black—Scholes model, there exists a unique EMM @, and thus Exercise
12.3(a) is applicable. We hence have

s ()

To compute this, we start by writing

J(y) = sup (U({E) - a:y) = sup (}Y:ﬂ - xy) :

z>0 x>0

Taking the derivative of %x” — xy with respect to x and setting it equal to zero,

1
we get x = y7-1, and hence

1 v 11—y 2
J(y) =~y —y1 = YL,
g 8
We also recall that in the Black—Scholes model,
d@
— =E&(—\W
ap ~ £
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where \ := “;T. So we have

-2l

107 g 7]

1 -7 (1 /\2’)/ T)
= zrTexp | = ,
v 2(1—~)?

where in the last step we use that £(aWW) is a P-martingale for each a € R.
Substituting A = #-* then gives the result.

(b) First, note that j(z) < oo for some z € (0, 00) implies that
u(zr) < j(z)+ 22 < oo, z€(0,00).

We computed J(z) = 1_772_&, and hence J'(z) = —2 5. Now fix z > 0.
With the same notation as in Exercise 12.3, we have

fi=-J (zx;lg> = ,z;,?ﬁ(g(—AW)T)‘ﬁ

1 A%y A 1 )\
=—5 —— T —W = T
](Zx)exp< 2(1— )2 >eXp<1_7 T+21—’Y )

A 1\
_ A (Wi +AT) — = T
xexp(l_fy( T+ AT) 21— ) )

:a:S()\R) )
L=y Jr

This completes the proof.

(¢) Fix z > 0. By the definition of the stochastic exponential and using that
= £ we have

T A
f;:x<1+/ 5( A R) th>
0 =y ), 1—=7~
T A A1
= ds}
:):+/O :)35(1_7R>t1_705t1 h

T 1 pu—r 1 p—r 1 1
= & R ds
x—i_/o v (1—7 o )tl—'y o oS} !

Ty 1 p—r 1 p—r 1
= — R dS;.
x+/() St1—v o2 5(1—7 o >t t
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This gives the first claim. Now using again that £(aWW) is a P-martingale for
all @ € R and that A = £~ we have

g

u@pdqwﬁﬂzif[G<ﬁiRLy1

This completes the proof.
(d) By part (b) and since A = L") we have

g

o 1 p—r
V}(x,ﬂ)—a:é’(l_fy . R)t,

and by part (c), we have

z 1 wpu—r 1 p—r
V= — & R].
ST -y o2 (1—7 o )t

Therefore, we obtain directly that

*

— VES}) _ 1 p—r
oVi(wdr) 1-y o?

This completes the proof.

Exercise 12.5 ( % has moments of all orders) Let S be a continuous real-valued
semimartingale satisfying the structure condition (SC), i.e. there exist a continuous
local martingale M null at zero and a predictable process A such that

S:&+M+/mum

and with the mean-variance tradeoff process K = [ A d(M) bounded. Now define
7 :=E&(=Xe M) and df = Zr.

(a) Show that Pe Pe10c(S).
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(b)

Show that both 3—113 and % have moments of all orders.

Solution 12.5

(a)

We need to show that P is an equivalent probability measure, and that S is a
P-local martingale. To this end, first note that since K is bounded, we have
that

oo (Loxe 12| = B o (L)

So by Novikov’s condition, we can conclude that Z is a martingale. As Z is
strictly positive, it follows that Pis an equivalent probability measure. It now
remains to show that S is a P-local martingale. To this end, we first apply the
stochastic product rule to 7S and write

< Q.

d(ZS) = 2dS + SdZ +d(Z, S).
Then we use that S satisfies (SC) and that
dZ =dE(-Ne M) =E(-Ae M)d(-Ae M) = —-XE(=Ae M)dM = —\Z dM
to compute
A(ZS) = ZdM + ZXA(M) — SAZdM — \Z d (M)
= (Z — S\Z)dM.

As Z, S and M are continuous, it follows that ZS is a P-local martingale, so
that S is a P-local martingale, and hence P € P ., as required.

We compute, for any p € R,
7D L
ZF =exp —p)\OMT—ip)\ o (M)r

1 1
= exp ( —pAe My — 5]92)\2 . (M>T> exp <2(p2 —p)A’e (M)T>
=E(—p) e M)rexp ((p2 - p)KT).
So letting C' < 0o be a bound on K, we can write

E(Z7] < E[E(—pA o M)r]exp(Clp* — p|) < exp(Cp” — p|) < oo,

since £(—pA o M) is a supermartingale. As Zp = % and Z;' = %, this
completes the proof.
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