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Exercise 2.1 (From local martingale to supermartingale) Let (Xt)t>0 be a local
martingale null at zero and (Yt)t>0 a martingale such that Yt 6 Xt for each t > 0.
Prove that X is a supermartingale.

Note. This result shows in particular that a local martingale null at zero is a
supermartingale if it is bounded below by a constant.

Solution 2.1 Define the difference process Z := X−Y . Note that since X = Z+Y
and Y is a martingale (and hence a supermartingale), it suffices to show that Z is a
supermartingale.

Since a martingale is a local martingale, and the space of local martingales is a vector
space, we know that Z is a local martingale. Let (τn)n∈N be a localising sequence for
Z. Since Z is nonnegative, we can apply the Fatou’s lemma to get

E[Zt | Fs] 6 lim inf
n→∞

E[Zt∧τn | Fs] = lim inf
n→∞

Zs∧τn = Zs.

Taking expectations of the above with s = 0 gives

0 6 E[Zt] 6 E[Z0] = −E[Y0] <∞.

It follows that Z is integrable and a supermartingale. This completes the proof.

Exercise 2.2 (Equivalent characterisation of arbitrage) For a finite time horizon
T > 0, fix a filtration F = (Ft)06t6T and a semimartingale S = (St)06t6T . Recall the
following notations:

• Θadm is the family of admissible integrands for S.

• GT (Θadm) := {GT (ϑ) : ϑ ∈ Θadm}.

• L0
+ is the family of (equivalence classes, for P -a.s. equality, of) nonnegative

random variables.

• (NA) denotes the “general” absence of arbitrage condition

GT (Θadm) ∩ L0
+ = {0}.
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This says that for any self-financing strategy with zero initial capital, the only
way to ensure a nonnegative final value (with probability 1) at expiry is to
have value zero at expiry.

• C0
adm := GT (Θadm)− L0

+ = {GT (ϑ)− Y : ϑ ∈ Θadm, Y ∈ L0
+}.

Prove that (NA) is equivalent to C0
adm ∩ L∞ ∩ L0

+ = {0}.

Solution 2.2 First assume that (NA) holds. Take GT (ϑ)− Y ∈ C0
adm ∩ L0

+. Since
GT (ϑ)− Y ∈ L0

+ and Y ∈ L0
+, then also GT (ϑ) ∈ L0

+, and thus by (NA), GT (ϑ) = 0.
We thus have GT (ϑ)− Y = −Y ∈ L0

+, and hence Y = 0, so that GT (ϑ)− Y = 0. It
follows that C0

adm ∩ L∞ ∩ L0
+ ⊆ {0}, and since clearly 0 ∈ C0

adm ∩ L∞ ∩ L0
+, we have

equality.

Conversely, take GT (ϑ) ∈ GT (Θadm) ∩ L0
+. We need to show that GT (ϑ) = 0. Note

that for each n ∈ N,

GT (ϑ) ∧ n = GT (ϑ)−
(

(GT (ϑ)− n) ∨ 0
)
∈ C0

adm.

Moreover, 0 6 GT (ϑ) ∧ n 6 n so that GT (ϑ) ∈ C0
adm ∩ L∞ ∩ L0

+, and hence by
assumption GT (ϑ) ∧ n = 0. Finally, we have

GT (ϑ) = lim
n→∞

GT (ϑ) ∧ n = 0,

as required.

Exercise 2.3 (Equivalent martingale measure) Let S be a semimartingale with
respect to the probability measure P , and suppose Q ≈ P is an equivalent probability
measure satisfying EQ[Y ] 6 0 for all Y ∈ C0

adm ∩ L∞.

(a) Prove that Q satisfies EQ[GT (ϑ)] 6 0 for all ϑ ∈ Θadm.

(b) If S is bounded, prove that S is a Q-martingale.

Solution 2.3

(a) Let ϑ ∈ Θadm. For n ∈ N, note that

GT (ϑ) ∧ n = GT (ϑ)−
(

(GT (ϑ)− n) ∨ 0
)
∈ C0

adm.

Since θ ∈ Θadm, there is some a > 0 such that GT (ϑ) > −a. Also, we
have GT (ϑ) ∧ n 6 n by construction, and thus −a 6 GT (ϑ) ∧ n 6 n so that
GT (ϑ)∧n ∈ L∞. Hence, GT (ϑ)∧n ∈ C0

adm∩L∞. It follows from the assumption
that EQ[GT (ϑ) ∧ n] 6 0. Fatou’s lemma thus gives

EQ[GT (ϑ)] 6 lim inf
n→∞

EQ[GT (ϑ) ∧ n] 6 0,

and hence EQ[GT (ϑ)] 6 0, as required.
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(b) We are given that S is a semimartingale (with respect to P ) and thus adapted.
Also, S is integrable since it is bounded. It remains to verify that S satisfies
the martingale property. So fix times 0 6 s < t and A ∈ Fs. It suffices to show
that

EQ[(St − Ss)1A] = 0, (1)
since this implies that EQ[St − Ss | Fs] = 0 by the definition of the conditional
expectation.

Now, define the process ϑ = 1A×(s,t]. Then ϑ is predictable, S-integrable and
admissible, since S is bounded. We compute

GT (ϑ) =
∫ T

0
ϑ dS = 1A(St − Ss).

With (1) in mind, it remains to show EQ[GT (ϑ)] = 0. By part (a), we have
EQ[GT (ϑ)] 6 0. By considering −ϑ ∈ Θadm, we also have EQ[GT (−ϑ)] 6 0,
and since GT (−ϑ) = −GT (ϑ), this yields EQ[GT (ϑ)] = 0, completing the proof.

Exercise 2.4 (Example of arbitrage on a finite time interval) Let us consider the
arbitrage strategy (with zero initial value) on the infinite time interval [0,∞) given
by

ϑ = 1K0,τK, τ := inf{t > 0 : Wt = 1},
where W is a Brownian motion. Note that for the above strategy, we must be on the
infinite time interval [0,∞) because although τ <∞ a.s., τ is unbounded.

Construct a similar arbitrage strategy on the interval [0, T ], where T > 0 is a fixed
finite horizon.

Hint: Consider the geometric Brownian motion S = (St)t>0 given by

St = exp
(
Wt −

1
2t
)
,

which is adapted to the filtration F = (F t)t>0. Apply the time-change t = tan u and
let T = π/2 be the expiry time (after the time change).

Solution 2.4 By the law of the iterated logarithm, we have limt→∞ St = 0. So
the stopping time τ̄ := inf{t > 0 : St = 1/2} is a.s. finite. Define the process
S = (Su)06u6π/2 by

Su = Stanu, 0 6 u < π/2,
and Sπ/2 = 0. Then S is adapted to the filtration F = (Fu)06u6π/2 defined by
Fu = F tanu. Note also that since limt→∞ St = 0, the process S is continuous. Define
τ := arctan τ , which is a stopping time with respect to F (since tan is strictly
increasing on [0, π/2]) satisfying 0 6 τ < π/2. We define the self-financing strategy
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ϕ =̂ (0, ϑ) by ϑ := −1K0,τK (note ϑ is adapted and left-continuous, thus predictable).
We compute

Vt(ϕ) =
∫ t

0
ϑu dSu = −

∫ t∧τ

0
dSu = S0 − Sτt = 1− Sτt .

So since τ < π/2, we have Vπ/2(ϕ) = 1− Sτ = 1− Sτ = 1/2, and thus ϕ =̂ (0, ϑ) is
an arbitrage strategy.
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