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Exercise 2.1 (From local martingale to supermartingale) Let (X;);>0 be a local
martingale null at zero and (Y;);>0 a martingale such that Y; < X; for each t > 0.
Prove that X is a supermartingale.

Note. This result shows in particular that a local martingale null at zero is a
supermartingale if it is bounded below by a constant.

Solution 2.1 Define the difference process Z := X — Y. Note that since X = Z+Y
and Y is a martingale (and hence a supermartingale), it suffices to show that Z is a
supermartingale.

Since a martingale is a local martingale, and the space of local martingales is a vector
space, we know that Z is a local martingale. Let (7,,),en be a localising sequence for
Z. Since Z is nonnegative, we can apply the Fatou’s lemma to get

E[Zt | ]:S] < hrl;Il)logle[Zt/\Tn | FS] = hrl;l;l)lo{)lf ZS/\Tn = Zs'
Taking expectations of the above with s = 0 gives
0 < E[Z)] < E[Zy) = —E[Y)] < 0.

It follows that Z is integrable and a supermartingale. This completes the proof.

Exercise 2.2 (Equivalent characterisation of arbitrage) For a finite time horizon
T > 0, fix a filtration F = (F;)o<t<r and a semimartingale S = (S)o<t<r. Recall the
following notations:

o O,qm is the family of admissible integrands for S.
. GT<@adm> = {GT(ﬁ) 0 e @adm}-

o LY is the family of (equivalence classes, for P-a.s. equality, of) nonnegative
random variables.

« (NA) denotes the “general” absence of arbitrage condition

G1(Oaam) N LY = {0}.
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This says that for any self-financing strategy with zero initial capital, the only
way to ensure a nonnegative final value (with probability 1) at expiry is to
have value zero at expiry.

o Clim = G1(Ouam) — LY = {G7(9) =Y 19 € Opqm, Y € LY}
Prove that (NA) is equivalent to Cy,, N L N LY = {0}.

Solution 2.2 First assume that (NA) holds. Take Gr(9) —Y € C%,, N LY. Since

adm
Gr(¥0)—Y € LY and Y € LY, then also Gp(9) € LY, and thus by (NA), Gr(J) = 0.
We thus have Gr(9) —Y = =Y € LY, and hence Y = 0, so that Gp(J) =Y = 0. It
follows that C2,,, N L> N LY C {0}, and since clearly 0 € C2;,, N L N LY, we have
equality.

Conversely, take Gr(9) € Gr(Oaam) N LY. We need to show that Gr(9) = 0. Note
that for each n € N,

Gr(9) An = Gr(¥) — ((GT(ﬁ) —n)v o) e

adm*

Moreover, 0 < Gr(9) An < n so that Gr(9) € C,, N L> N LY, and hence by
assumption Gr(J) An = 0. Finally, we have

Gr(®) = Jim Gr(v) An =0,

as required.

Exercise 2.3 (Equivalent martingale measure) Let S be a semimartingale with
respect to the probability measure P, and suppose () &~ P is an equivalent probability
measure satisfying Fg[Y] < 0 for all Y € C2,, N L.

adm

(a) Prove that @ satisfies Eg[G7(¥)] < 0 for all ¥ € Ouqm.
(b) If S is bounded, prove that S is a ()-martingale.

Solution 2.3
(a) Let ¥ € Ouqm. For n € N, note that

Gr(9) An = Gr(9) — ((GT(ﬁ) —n)V o) e

adm*

Since 6 € O,qm, there is some a > 0 such that Gp(¥) > —a. Also, we
have G7(9) A n < n by construction, and thus —a < Gr(¥) An < n so that
Gr(9)An € L>. Hence, Gr(9)An € C2y, ,NL>. It follows from the assumption

adm

that Eg[Gr(9) An] < 0. Fatou’s lemma thus gives
Eqo[Gr(9)] < liminf Eq[Gr(9) An] <0,

and hence Eqg[Gr(9)] < 0, as required.
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(b) We are given that S is a semimartingale (with respect to P) and thus adapted.
Also, S is integrable since it is bounded. It remains to verify that S satisfies
the martingale property. So fix times 0 < s < t and A € F;. It suffices to show

that

Eq[(St — S5)14] = 0, (1)
since this implies that Eg[S; — Ss | Fs] = 0 by the definition of the conditional
expectation.

Now, define the process ) = 14x(s. Then ¥ is predictable, S-integrable and
admissible, since S is bounded. We compute

Gr(9) = /OTﬂdS —14(S, — ).

With (1) in mind, it remains to show Eg[Gr ()] = 0. By part (a), we have
EolGr(¥)] < 0. By considering — € ©uam, we also have Eg[Gr(—17)] < 0,
and since Gr(—19) = —Gr(9), this yields Eg[Gr(¥)] = 0, completing the proof.

Exercise 2.4 (Ezample of arbitrage on a finite time interval)  Let us consider the
arbitrage strategy (with zero initial value) on the infinite time interval [0, co) given
by

U =1y, 7:=inf{t >0: W, =1},

where W is a Brownian motion. Note that for the above strategy, we must be on the
infinite time interval [0, co) because although 7 < oo a.s., 7 is unbounded.

Construct a similar arbitrage strategy on the interval [0, T], where T' > 0 is a fixed
finite horizon.

Hint: Consider the geometric Brownian motion S = (S¢)o given by

_ 1
St = eXp (Wt — 2'[;),

which is adapted to the filtration F = (F;)¢=0. Apply the time-change t = tanu and
let T = m/2 be the expiry time (after the time change).

Solution 2.4 By the law of the iterated logarithm, we have lim; ., S; = 0. So
the stopping time 7 := inf{t > 0 : S; = 1/2} is a.s. finite. Define the process
S = (SU)O<U<W/2 by o

Sy = Stanu, 0<u<m/2,

and S;;2 = 0. Then S is adapted to the filtration F = (F,)o<u<r/2 defined by
Fu = Fianwu. Note also that since lim;_.o, Sy = 0, the process S is continuous. Define
7 := arctan7, which is a stopping time with respect to F (since tan is strictly
increasing on [0, 7/2]) satisfying 0 < 7 < 7/2. We define the self-financing strategy
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¢ = (0,9) by ¥ := —1y9, (note 9 is adapted and left-continuous, thus predictable).
We compute

t tAT
Vile) = [ 0uds, =~ [Tas,=So— 87 =157,

So since T < 7/2, we have V;j5(p) =1— 5, =1— Sz =1/2, and thus ¢ = (0,9) is
an arbitrage strategy.
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