Mathematical Finance Exercise Sheet 5

Submit by 12:00 on Wednesday, October 30 via the course homepage.

Exercise 5.1 (Convergence in probability) Consider the metric d on L^0 defined by $d(X,Y) := E[1 \land |X - Y|]$. Show that for $X_n, X \in L^0$, we have

 $X_n \to X$ in probability $\iff d(X_n, X) \to 0.$

Solution 5.1 First suppose $X_n \to X$ in probability, and fix $\varepsilon \in (0, 1)$. We have

$$d(X_n, X) = E[1 \land |X_n - X|]$$

= $E[(1 \land |X_n - X|) \mathbf{1}_{\{|X_n - X| > \varepsilon\}}] + E[(1 \land |X_n - X|) \mathbf{1}_{\{|X_n - X| \le \varepsilon\}}]$
 $\leqslant P[|X_n - X| > \varepsilon] + \varepsilon \to \varepsilon \text{ as } n \to \infty,$

where in the last step we use that $X_n \to X$ in probability. We have thus shown that for all $\varepsilon \in (0, 1)$, $\limsup_{n \to \infty} d(X_n, X) \leq \varepsilon$, and hence $\lim_{n \to \infty} d(X_n, X) = 0$.

Conversely, suppose $\lim_{n\to\infty} d(X_n, X) = 0$, and fix $\varepsilon \in (0, 1)$. We have

$$P[|X_n - X| > \varepsilon] = P[1 \land |X_n - X| > \varepsilon]$$

$$\leqslant \varepsilon^{-1} E[1 \land |X_n - X|]$$

$$= \varepsilon^{-1} d(X_n, X) \to 0 \quad \text{as } n \to \infty.$$

This completes the proof.

Exercise 5.2 (Good integrator) Fix a finite time horizon T > 0, a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F} = (\mathcal{F}_t)_{0 \leq t \leq T}$, and an adapted RCLL process $X = (X_t)_{0 \leq t \leq T}$. Show that X is a good integrator if and only if the set

$$\mathfrak{X}_{(1)} := \{ H \bullet X_T : H \in \mathbf{b}\mathcal{E}, \|H\|_{\infty} \leq 1 \}$$

is bounded in L^0 , in the sense that $\lim_{n\to\infty} \sup_{Y\in\mathfrak{X}_{(1)}} P[|Y| \ge n] = 0.$

Recall that X is a good integrator if whenever $H^n, H \in b\mathcal{E}$ with $H^n \to H$ uniformly in (ω, t) , we have $H^n \bullet X_T \to H \bullet X_T$ in L^0 .

Updated: November 5, 2024

Solution 5.2 Assume first that X is a good integrator, and suppose for contradiction that $\mathfrak{X}_{(1)}$ is not bounded in L^0 . This means that there is $\varepsilon > 0$ and a sequence $(H^n) \subseteq \mathrm{b}\mathcal{E}$ such that $||H^n||_{\infty} \leq 1$ and $P[|H^n \bullet X_T| \geq n] \geq \varepsilon$. Then $(\frac{1}{n}H^n) \subseteq \mathrm{b}\mathcal{E}$ with $||\frac{1}{n}H^n||_{\infty} \leq \frac{1}{n}$ and

$$P[|\frac{1}{n}H^n \bullet X_T| \ge 1] = P[|H^n \bullet X_T| \ge n] \ge \varepsilon_1$$

so that in particular $\frac{1}{n}H^n \bullet X_T \neq 0$ in L^0 . This contradicts the assumption that X is a good integrator, since $\|\frac{1}{n}H^n\| \leq \frac{1}{n}$ implies that $\frac{1}{n}H^n \to 0$ uniformly in (ω, t) . It follows that $\mathfrak{X}_{(1)}$ is bounded in L^0 .

Conversely, assume that $\mathfrak{X}_{(1)}$ is bounded in L^0 , and suppose $H^n, H \in b\mathcal{E}$ with $H^n \to H$ uniformly in (ω, t) . We need to show that $H^n \bullet X_T \to H \bullet X_T$ in L^0 , i.e. that for fixed $\varepsilon > 0$,

$$P[|(H^n - H) \bullet X_T| \ge \varepsilon] \to 0 \quad \text{as } n \to \infty.$$
(1)

If there exists $N \in \mathbb{N}$ such that $||H^n - H||_{\infty} = 0$ for all $n \ge N$, then we also have $(H^n - H) \bullet X_T = 0$ for all $n \ge N$ and thus (1) holds trivially.

If there does not exist such $N \in \mathbb{N}$, then we may assume without loss of generality that $||H^n - H||_{\infty} > 0$ for all $n \in \mathbb{N}$. We can then write

$$P[|(H^{n} - H) \bullet X_{T}| \ge \varepsilon] = P\left[\left|\frac{H^{n} - H}{\|H^{n} - H\|_{\infty}} \bullet X_{T}\right| \ge \frac{\varepsilon}{\|H^{n} - H\|_{\infty}}\right]$$
$$\leqslant \sup_{\substack{G \in b\mathcal{E} \\ \|G\| \leqslant 1}} P\left[|G \bullet X_{T}| \ge \frac{\varepsilon}{\|H^{n} - H\|_{\infty}}\right].$$

Since $||H^n - H||_{\infty} \to 0$ as $n \to \infty$, then $\frac{\varepsilon}{||H^n - H||_{\infty}} \to \infty$ as $n \to \infty$, and thus the right hand side of the above inequality converges to zero as $n \to \infty$, by boundedness of $\mathfrak{X}_{(1)}$. We have thus shown that (1) holds, completing the proof.

Exercise 5.3 (The spaces \mathbb{L} and \mathbb{D}) Fix a finite time horizon T > 0 and a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$, where $\mathbb{F} = (\mathcal{F}_t)_{0 \leq t \leq T}$ is assumed to be complete. Let \mathbb{L} and \mathbb{D} denote the spaces of adapted LCRL and adapted RCLL processes, respectively. Define the metric

$$d(X^1, X^2) := E[1 \land (X^1 - X^2)_T^*] := E\left[1 \land \sup_{0 \le s \le T} |X_s^1 - X_s^2|\right]$$

on both \mathbb{L} and \mathbb{D} (note that convergence with respect to d is exactly uniform (in t) convergence in probability). Show that when equipped with d, both \mathbb{L} and \mathbb{D} are complete metric spaces.

Hint: You may use that the space of (deterministic) LCRL (respectively RCLL) functionals on [0,T] equipped with the supremum norm is a Banach space.

Updated: November 5, 2024

Solution 5.3 As the proof that (\mathbb{D}, d) is a complete metric space is analogous, we only show that (\mathbb{L}, d) is a complete metric space. It is clear from the definition that d is positive and symmetric (and maps $\mathbb{L} \times \mathbb{L}$ into $[0, \infty)$). To see that d satisfies the triangle inequality and is thus a metric, we consider $X^1, X^2, X^3 \in \mathbb{L}$ and compute

$$d(X^{1}, X^{3}) = E\left[1 \wedge \sup_{0 \leq s \leq T} |X_{s}^{1} - X_{s}^{3}|\right]$$

$$\leq E\left[1 \wedge \left(\sup_{0 \leq s \leq T} |X_{s}^{1} - X_{s}^{2}| + \sup_{0 \leq s \leq T} |X_{s}^{2} - X_{s}^{3}|\right)\right]$$

$$\leq E\left[1 \wedge \sup_{0 \leq s \leq T} |X_{s}^{1} - X_{s}^{2}| + 1 \wedge \sup_{0 \leq s \leq T} |X_{s}^{2} - X_{s}^{3}|\right]$$

$$= d(X^{1}, X^{2}) + d(X^{2}, X_{3}).$$

It remains to show (\mathbb{L}, d) is complete. To this end, take a Cauchy sequence $(X^n)_{n \in \mathbb{N}} \subseteq \mathbb{L}$. Then there exists a subsequence $(n_k)_{k \in \mathbb{N}} \subseteq \mathbb{N}$ such that

$$d(X^{n_k}, X^{n_{k+1}}) = E\left[1 \wedge \sup_{0 \le s \le T} |X^{n_k+1} - X^{n_k}|\right] \le \frac{1}{2^{2k}}.$$

In particular,

$$P[(X^{n_{k+1}} - X^{n_k})_T^* > 2^{-k}] = P[1 \wedge (X^{n_{k+1}} - X^{n_k})_T^* > 2^{-k}]$$

$$\leqslant 2^k E[1 \wedge (X^{n_{k+1}} - X^{n_k})_T^*]$$

$$\leqslant \frac{1}{2^k}.$$

Hence

$$\sum_{k=1}^{\infty} P[(X^{n_{k+1}} - X^{n_k})_T^* > 2^{-k}] < \infty.$$

The Borel–Cantelli lemma implies that

$$P\left[\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}\{(X^{n_{k+1}}-X^{n_k})_T^*>2^{-k}\}\right]=0,$$

and so

$$P\left[\bigcup_{n=1}^{\infty}\bigcap_{k=n}^{\infty} \{(X^{n_{k+1}} - X^{n_k})_T^* \leqslant 2^{-k}\}\right] = 1.$$

Thus with probability 1, $(X^{n_k})_{k\in\mathbb{N}}$ is a Cauchy sequence with respect to uniform convergence on [0,T]. Since the space of (deterministic) LCRL functionals on [0,T]is a Banach space when equipped with the supremum norm, it follows that for almost every $\omega \in \Omega$, there is a (deterministic) LCRL functional $X(\omega) : [0,T] \to \mathbb{R}$ such that $X^{n_k}(\omega) \to X(\omega)$ uniformly on [0,T]. For all other ω , define $X(\omega) \equiv 0$. This then defines a stochastic process $X = (X_t)_{0 \leq t \leq T}$ whose sample paths are LCRL and

Updated: November 5, 2024

with $X^{n_k} \to X$ uniformly on [0, T], almost surely. In particular, we have for each $t \in [0, T]$ that $X_t = \lim_{k \to \infty} X_t^{n_k}$ almost surely, and thus X_t is \mathcal{F}_t -measurable since \mathbb{F} is complete. We have thus shown that X is adapted and hence $X \in \mathbb{L}$. Since $X^{n_k} \to X$ uniformly on [0, T] with probability 1, the dominated convergence theorem yields $d(X^{n_k}, X) \to 0$ as $k \to \infty$. Finally, using the fact that a Cauchy sequence converges to a limit if and only if it has a subsequence that converges to the same limit, we conclude that $d(X^n, X) \to 0$ as $n \to \infty$. This completes the proof.

Exercise 5.4 (Stopped good integrator) Show that a stopped good integrator is a good integrator. That is, if $X = (X_t)_{0 \le t \le T}$ is a good integrator and τ is a stopping time, show that X^{τ} is a good integrator.

Solution 5.4 Take $H^n, H \in b\mathcal{E}$ with $H^n \to H$ uniformly in (ω, t) . We need to show that $(H^n \bullet X^{\tau})_T \to (H \bullet X^{\tau})_T$ in L^0 . Note that

$$(H \bullet X^{\tau})_T = (H \bullet X)_{\tau} = (H \mathbf{1}_{\llbracket 0, \tau \rrbracket} \bullet X)_T, (H^n \bullet X^{\tau})_T = (H^n \bullet X)_{\tau} = (H^n \mathbf{1}_{\llbracket 0, \tau \rrbracket} \bullet X)_T$$

It is clear that $H^{n}\mathbf{1}_{[0,\tau]}, H\mathbf{1}_{[0,\tau]} \in b\mathcal{E}$ with $H^{n}\mathbf{1}_{[0,\tau]} \to H\mathbf{1}_{[0,\tau]}$ uniformly in (ω, t) , and thus since X is a good integrator, we have $(H^{n}\mathbf{1}_{[0,\tau]} \bullet X)_{T} \to (H\mathbf{1}_{[0,\tau]} \bullet X)_{T}$ in L^{0} . This completes the proof.

Exercise 5.5 (Corollary 3.8) Let $\mathcal{M}_{0,\text{loc}}$ denote the space of local martingales null at zero. Show that if $M \in \mathcal{M}_{0,\text{loc}}$ then $[M]^{1/2}$ is locally integrable.

Solution 5.5 Recall the space \mathcal{H}^1 given by

$$\mathcal{H}^1 := \left\{ M = (M_t)_{0 \le t \le T} : M \text{ RCLL martingale}, \ M_T^* := \sup_{0 \le t \le T} |M_t| \in L^1 \right\}.$$

By Exercise 3.1, we know that every local martingale is locally in \mathcal{H}^1 . That is, for each local martingale M, there is a sequence of stopping times $\tau_n \uparrow T$ stationarily such that $M^{\tau_n} \in \mathcal{H}^1$ for all $n \in \mathbb{N}$. So fix $M \in \mathcal{M}_{0,\text{loc}}$ and let (τ_n) be such a sequence. It suffices to show that for each $n \in \mathbb{N}$, $([M]^{\tau_n})^{1/2}$ is integrable, i.e. for all $t \in [0, T]$, $[M]_{t \wedge \tau_n}^{1/2} \in L^1$. Since [M] is increasing (by Lemma 3.6), it suffices to show that $[M]_{\tau_n}^{1/2} \in L^1$. Since $[M]^{\tau_n} = [M^{\tau_n}]$, we have

$$E[[M]_{\tau_n}^{1/2}] = E[[M^{\tau_n}]_T^{1/2}] \leqslant CE[(M^{\tau_n})_T^*],$$

where C > 0 is given by Davis' inequality. Since $M^{\tau_n} \in \mathcal{H}^1$, we have $(M^{\tau_n})_T^* \in L^1$, and thus the right-hand side of the above inequality is finite. This completes the proof.

Updated: November 5, 2024

Exercise 5.6 (Approximation) Fix a filtered probability space $(\Omega, \mathcal{F}, \mathbb{F}, P)$ where \mathbb{F} is right-continuous, and let S be a semimartingale. Show in detail that for every $H \in \mathbb{L}$ such that $H_0 = 0$ almost surely, one can find a sequence $(H^n)_{n \in \mathbb{N}} \subseteq b\mathcal{E}$ with $d'_E(H^n \bullet S, H \bullet S) \to 0$ as $n \to \infty$.

Solution 5.6 We first show that $b\mathcal{E}_0$ is dense in (\mathbb{L}, d) .

Fix $H \in \mathbb{L}$ and $\varepsilon > 0$. Assume first that H is bounded. We want to construct some approximation H^{ε} of H that is constant on the stochastic intervals $[]\tau_n, \tau_{n+1}]$, where $\tau_n \uparrow T$ stationarily are some stopping times. To this end, we first attempt to define $\tau'_0 := 0$ and

$$\tau'_{n+1} := \inf\{t > \tau'_n : |H_t - H_{\tau'_n}| \ge \varepsilon\} \wedge T,$$

for all $n \ge 0$. The problem with the above definition is that the sample paths of H are left-continuous, so if there is a (big) jump at time τ'_n , $|H_t - H_{\tau'_n}| \ge \varepsilon$ for all t just after τ'_n , and thus $\tau'_{n+1} = \tau'_n$, so that $\tau_n \not\to T$.

To get around this, we consider the process $Y = (Y_t)_{0 \le t \le T}$ given by

$$Y_t := H_{t+} := \lim_{s \downarrow t} H_s.$$

Then Y is RCLL, and since the filtration \mathbb{F} is right-continuous, Y is adapted, so that $Y \in \mathbb{D}$. We then instead define $\tau_0 := 0$, and for all $n \ge 0$,

$$\tau_{n+1} := \inf\{t > \tau_n : |Y_t - Y_{\tau_n}| \ge \varepsilon\} \wedge T.$$

Since $Y \in \mathbb{D}$, each τ_n is a stopping time and $\tau_n \uparrow T$ stationarily. Now define

$$H^{\varepsilon} := H_0 \mathbf{1}_{\llbracket 0 \rrbracket} + \sum_{n=1}^{\infty} Y_{\tau_n} \mathbf{1}_{\llbracket \tau_n, \tau_{n+1} \rrbracket}$$

We see that $||H^{\varepsilon} - H||_{\infty} \leq \varepsilon$, because $|H^{\varepsilon} - H| \leq \varepsilon$ on $]|\tau_n, \tau_{n+1}[]$ and

$$|H_{\tau_{n+1}}^{\varepsilon} - H_{\tau_{n+1}}| = |Y_{\tau_n} - H_{\tau_{n+1}-}| \leqslant \varepsilon,$$

by minimality of τ_{n+1} . In particular,

$$d(H^{\varepsilon}, H) = E\left[1 \wedge \sup_{0 \leqslant s \leqslant T} |H_s^{\varepsilon} - H_s|\right] \leqslant \varepsilon.$$

Now define

$$H^{\varepsilon,m} := H_0 \mathbf{1}_{\llbracket 0 \rrbracket} + \sum_{n=1}^m Y_{\tau_n} \mathbf{1}_{\llbracket \tau_n, \tau_{n+1} \rrbracket} \in \mathbf{b}\mathcal{E}_0.$$

Note here we use boundedness of H (so that also Y is bounded, by the same bound) to conclude $H^{\varepsilon,m} \in \mathbf{b}\mathcal{E}_0$. As $\tau_n \uparrow T$ stationarily, then

$$d(H^{\varepsilon,m}, H^{\varepsilon}) = E \left[1 \wedge \sup_{0 \leq s \leq T} |H_s^{\varepsilon,m} - H_s^{\varepsilon}| \right]$$
$$\leq E \left[\left(1 \wedge \sup_{0 \leq s \leq T} |H_s^{\varepsilon,m} - H_s^{\varepsilon}| \right) \mathbf{1}_{\{T > \tau_{m+1}\}} \right] \to 0,$$

Updated: November 5, 2024

and thus there exists $m(\varepsilon) \in \mathbb{N}$ such that $d(H^{\varepsilon,m(\varepsilon)}, H^{\varepsilon}) < \varepsilon$. The triangle inequality thus gives

$$d(H^{\varepsilon,m(\varepsilon)},H) \leqslant 2\varepsilon.$$

We have thus shown that when H is bounded, we can approximate it in (\mathbb{L}, d) by elements of $b\mathcal{E}_0$.

Now consider the general case when H is unbounded. Fix some $\delta > 0$. For each $n \in \mathbb{N}$ define the stopping time $\sigma_n := \inf\{t \ge 0 : |H_t| > n\} \wedge T$. Then $\sigma_n \uparrow T$ stationarily, and $H^{\sigma_n} \in \mathbb{L}$ is bounded. So for fixed $\varepsilon > 0$ and every $n \in \mathbb{N}$ we can find some $K^n \in b\mathcal{E}_0$ with $P[(H^{\sigma_n} - K^n)^*_T > \delta] \leq \varepsilon$. We then have

$$P[(H - K^n)_T^* > \delta] \leq P[\sigma_n < T] + P[(H^{\sigma_n} - K^n)_T^* > \delta]$$
$$\leq P[\sigma_n < T] + \varepsilon.$$

Since $\sigma_n \uparrow T$ stationarily, there is some $N \in \mathbb{N}$ such that for all $n \ge N$, $P[\sigma_n < T] \le \varepsilon$, and hence $P[(H - K^n)_T^* > \delta] \le 2\varepsilon$ for all $n \ge N$. This shows that $K^n \to H$ in (\mathbb{L}, d) , and thus $b\mathcal{E}_0$ is dense in (\mathbb{L}, d) , as claimed.

Alternatively, we could consider $H^n := -n \lor H \land n \in \mathbb{L}$, which is bounded, and note that since $H \in \mathbb{L}$, it is almost-surely bounded on the compact interval [0,T] (with a different bound for each ω), and thus

$$\lim_{n \to \infty} \sup_{0 \le s \le T} |H_s^n - H_s| = 0, \quad a.s.$$

The dominated convergence theorem then gives $d(H^n, H) \to 0$ as $n \to \infty$. Since we can approximate each H^n by elements of $b\mathcal{E}_0$, the same holds for H, which again gives us the claim.

Now that we have established that $b\mathcal{E}_0 \subseteq (\mathbb{L}, d)$ is dense, we take a sequence $(K^n) \subseteq b\mathcal{E}_0$ with $d(K^n, H) \to 0$. We know from Theorem 3.5 that the integration map

$$J_S: (\mathbb{L}, d) \to (\mathcal{S}, d'_E)$$

is continuous. It thus follows that $d'_E(K^n \bullet S, H \bullet S) \to 0$. Now for each $n \in \mathbb{N}$ we set $H^n := K^n \mathbf{1}_{[0,T]} \in \mathbf{b}\mathcal{E}$. Note H^n is the same as K^n except that at time 0, $H^n_0 = 0$. It follows that $K^n \bullet S = H^n \bullet S$, and thus $d'_E(H^n \bullet S, H \bullet S) \to 0$. This completes the proof.