Mathematical Finance Exercise Sheet 6

Submit by 12:00 on Wednesday, November 6 via the course homepage.

Exercise 6.1 (Bounded in L^0) Show that a nonempty set $C \subseteq L^0$ is bounded in L^0 if and only if for every sequence $(X_n)_{n \in \mathbb{N}} \subseteq C$ and every sequence of scalars $\lambda_n \to 0$, we have $\lambda_n X_n \to 0$ in L^0 .

Solution 6.1 Suppose $C \subseteq L^0$ is bounded so that $\lim_{n\to\infty} \sup_{X\in C} P[|X| > n] = 0$, and fix a subsequence $(X_n)_{n\in\mathbb{N}} \subseteq C$ and a sequence of scalars $\lambda_n \to 0$, where we may assume $\lambda_n \neq 0$ for all $n \in \mathbb{N}$. Fix $\varepsilon > 0$. We need to show that

$$P[|\lambda_n X_n| > \varepsilon] = P[|X_n| > \varepsilon/|\lambda_n|] \to 0 \text{ as } n \to \infty.$$

To this end, we fix $\delta > 0$, and using the boundedness of C, we choose some $n_0 \in \mathbb{N}$ such that $\sup_{X \in C} P[|X| > n_0] \leq \delta$. Since $\lambda_n \to 0$, there is $N \in \mathbb{N}$ such that for all $n \geq N$, we have $\varepsilon/|\lambda_n| > n_0$. So then for all $n \geq N$,

$$P[|\lambda_n X_n| > \varepsilon] \leqslant P[|X_n| > n_0] \leqslant \sup_{X \in C} P[|X_n| > n_0] \leqslant \delta.$$

As $\delta > 0$ was arbitrary, this implies $\lambda_n X_n \to 0$ in L^0 .

Conversely, suppose that for any sequence $(X_n)_{n \in \mathbb{N}} \subseteq C$ and any sequence of scalars $\lambda_n \to 0$, we have $\lambda_n X_n \to 0$ in L^0 . Suppose for a contradiction that C is not bounded in L^0 . Then there is some $\delta > 0$ such that for all $n \in \mathbb{N}$,

$$\sup_{X \in C} P[|X| > n] \ge 2\delta$$

In particular, by the definition of the supremum, we can find a sequence $(X_n) \subseteq C$ such that

$$P[|X_n| > n] \ge \delta, \quad \forall n \in \mathbb{N}.$$

But then

$$P\left[\left|\frac{1}{n}X_n\right| > 1\right] \ge \delta, \quad \forall n \in \mathbb{N},$$

so that $\frac{1}{n}X_n \neq 0$ in L^0 . This contradicts our assumption and thus completes the proof.

Exercise 6.2 (Quadratic covariation) Recall that for a semimartingale S, the optional quadratic variation process is given by

$$[S] := S^2 - S_0^2 - 2\int S_- \,\mathrm{d}S$$

Updated: November 7, 2024

1/3

For two semimartingales X and Y, we define the *optional quadratic covariation* process to be

$$[X,Y] := \frac{1}{4}([X+Y] - [X-Y]).$$

Note that this definition is "consistent" with the optional quadratic variation in the sense that [X, X] = [X].

(a) Establish the integration by parts formula

$$XY = X_0 Y_0 + \int X_- \, \mathrm{d}Y + \int Y_- \, \mathrm{d}X + [X, Y].$$

- (b) Show that $\Delta[X, Y] = \Delta X \Delta Y$.
- (c) Show that $\sum_{0 < t \leq T} (\Delta X_t)^2 \leq [X]_T$.

In particular, $\sum_{0 < t \leq T} (\Delta X_t)^2$ is *P*-a.s. convergent (while $\sum_{0 < t \leq T} |\Delta X_t|$ need not converge).

Solution 6.2

(a) Using the definition of quadratic covariation, we write

$$\begin{aligned} 4[X,Y] &= [X+Y] - [X-Y] \\ &= (X+Y)^2 - (X+Y)_0^2 - 2\int (X+Y)_- \,\mathrm{d}(X+Y) \\ &- (X-Y)^2 + (X-Y)_0^2 + 2\int (X-Y)_- \,\mathrm{d}(X-Y) \\ &= 4XY - 4X_0Y_0 - 4\int X_- \,\mathrm{d}Y - 4\int Y_- \,\mathrm{d}X. \end{aligned}$$

This rearranges to the integration by parts formula, completing the proof.

(b) Using the integration by parts formula, we have

$$\begin{split} \Delta[X,Y] &= \Delta(XY) - X_{-}\Delta Y - Y_{-}\Delta X \\ &= XY - X_{-}Y_{-} - X_{-}(Y - Y_{-}) - Y_{-}(X - X_{-}) \\ &= XY - X_{-}Y - XY_{-} + X_{-}Y_{-} \\ &= (X - X_{-})(Y - Y_{-}) \\ &= \Delta X \Delta Y. \end{split}$$

(c) By part (b), we have

$$\sum_{0 < t \leq T} (\Delta X_t)^2 = \sum_{0 < t \leq T} \Delta [X, X]_t = \sum_{0 < t \leq T} \Delta [X]_t.$$

Since the map $t \mapsto [X]_t$ is increasing and $[X]_0 = 0$, we have

$$\sum_{0 < t \leq T} \Delta[X]_t \leq [X]_T < \infty,$$

as required.

Updated: November 7, 2024

2/3

Exercise 6.3 (Semimartingales) Show that $X \in \mathbb{D}$ is a semimartingale if and only if $d'_E(\lambda_n X, 0) \to 0$ whenever $\lambda_n \to 0$ in \mathbb{R} .

Solution 6.3 Assume first that $X \in \mathbb{D}$ is a semimartingale, and let $\lambda_n \to 0$ in \mathbb{R} . We need to show that $d'_E(\lambda_n X, 0) \to 0$. Recall by Lemma 3.2 that this is equivalent to showing that $H^n \bullet (\lambda_n X)_T \to 0$ in L^0 for every sequence $(H^n)_{n \in \mathbb{N}} \subseteq b\mathcal{E}_0$ with $\|H^n\|_{\infty} \leq 1$. So take such a sequence $(H^n)_{n \in \mathbb{N}}$. Then we have

$$H^n \bullet (\lambda_n X)_T = (\lambda_n H^n) \bullet X_T,$$

and $\|\lambda_n H^n\|_{\infty} \leq |\lambda_n| \to 0$. Since $X \in \mathbb{D}$ is a semimartingale, it is a good integrator (by Theorem 2.7), and thus $(\lambda_n H^n) \bullet X_T \to 0$ in L^0 , as required.

Conversely, assume that $d'_E(\lambda_n X, 0) \to 0$ whenever $\lambda_n \to 0$ in \mathbb{R} , and suppose for a contradiction that X is not a semimartingale. Then X is not a good integrator (by Theorem 2.5), and so there exists a sequence $(H^n)_{n\in\mathbb{N}} \subseteq b\mathcal{E}_0$ with $||H^n||_{\infty} \to 0$, but with $H^n \bullet X_T \not\to 0$ in L^0 . Using our assumption with $\lambda_n = ||H^n||_{\infty}$ gives $d'_E(||H^n||_{\infty}X, 0) \to 0$. We may assume that $||H^n||_{\infty} > 0$ for all $n \in \mathbb{N}$. Then by applying Lemma 3.2 with the sequence $(\frac{1}{||H^n||_{\infty}}H^n)_{n\in\mathbb{N}} \subseteq b\mathcal{E}_0$ (which satisfies $||\frac{1}{||H^n||_{\infty}}H^n||_{\infty} = 1$), we conclude that

$$\left(\frac{1}{\|H^n\|_{\infty}}H^n\right) \bullet \left(\|H^n\|_{\infty}X\right)_T \to 0 \quad \text{in } L^0.$$

But $(\frac{1}{\|H^n\|_{\infty}}H^n) \bullet (\|H^n\|_{\infty}X)_T = H^n \bullet X_T$, which contradicts $H^n \bullet X_T \neq 0$ in L^0 . This completes the proof.

Updated: November 7, 2024