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Exercise 7.1 (Admissibility at expiry) Let S be a semimartingale satisfying (NA),
and suppose ϑ ∈ Θadm has GT (ϑ) > −a P -a.s. for some a > 0. Show that G(ϑ) > −a
P -a.s., i.e. that ϑ is a-admissible.

Solution 7.1 Since G(ϑ) is right-continuous, it suffices to show that Gt(ϑ) > −a
P -a.s. for each t ∈ (0, T ). Suppose for a contradiction that there exists t ∈ (0, T )
with P [Gt(ϑ) < −a] > 0. Consider the integrand ϑ′ that waits until after time t
to follow ϑ on the event {Gt(ϑ) < −a}. That is, we define ϑ′ := ϑ1{Gt(ϑ)<−a}×(t,T ].
Note that ϑ′ is predictable, S-integrable and satisfies

G(ϑ′) =
(
G(ϑ)−Gt(ϑ)

)
1{Gt(ϑ)<−a}×(t,T ]. (1)

In particular, we have

GT (ϑ′) =
(
GT (ϑ)−Gt(ϑ)

)
1{Gt(ϑ)<−a} >

(
− a−Gt(ϑ)

)
1{Gt(ϑ)<−a} ∈ L0

+\{0}.

Since ϑ ∈ Θadm, there exists some c > 0 such that G(ϑ) > −c P -a.s., and hence from
(1) we get

G(ϑ′) > −c+ a,

so that ϑ′ ∈ Θadm. Note that we may assume c > a so that −c+ a = −(c− a) has
c − a > 0; indeed, if c 6 a and G(ϑ) > −c, then G(ϑ) > −a so that ϑ is already
a-admissible. We have thus shown that GT (ϑ′) ∈ Gadm ∩ L0

+\{0}, which contradicts
(NA). This completes the proof.

Exercise 7.2 (All gains are zero)

(a) Construct an example where S is a martingale, but Gadm = {0}. You may use
part (b).

(b) Show that if any continuous adapted process is deterministic, then so is any
predictable process.

Solution 7.2
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(a) Let Z ∼ N (0, 1) be a standard normal random variable, and define the process
S = (St)06t6T by

St =

0 if 0 6 t < T,

Z if t = T.

Clearly S is integrable. Consider the natural filtration FS. Since S is deter-
ministic for t ∈ [0, T ), then FSt is trivial for t ∈ [0, T ). In particular, for all
t ∈ [0, T ) we have

E[ST | FSt ] = E[ST ] = E[Z] = 0 = St.

It follows that S is a martingale. It remains to show that Gadm = {0}.

Note that since FSt is trivial for each t ∈ [0, T ), any adapted process must be
deterministic on [0, T ), and thus any adapted and left-continuous process must
be deterministic on [0, T ]. The same then holds for any predictable process
(by part (b)).

Now take ϑ ∈ Θadm. Since ϑ is predictable, it must be deterministic. So let
c := ϑT . Since S is constant on [0, T ), we have

Gt(ϑ) =

0 if 0 6 t < T,

cST if t = T.
(2)

In particular, GT (ϑ) = cZ ∼ N (0, c2) is unbounded unless c = 0 (in which case
GT (ϑ) ≡ 0). It follows from (2) that GT (ϑ) ∈ Gadm if and only if c = 0, which
implies Gadm = {0}, as required.

(b) Recall the monotone class theorem for functionals:

Fix a set E, and let B(E) denote the family of bounded functionals f : E → R.
Suppose H ⊆ B(E) is a linear subspace of B(E) containing the constant
function 1 and satisfying the following condition:

if f1, f2, . . . ∈ H with 0 6 f1 6 f2 6 . . . and f := limn→∞ fn ∈ B(E), then
f ∈ H.

Then for any subset K ⊆ H that is closed under multiplication (i.e. if f, g ∈ K
then fg ∈ K), H contains all bounded σ(K)-measurable functionals.

In the theorem above, we take E := Ω × [0, T ], so that B(E) denotes the
family of bounded processes. Let H ⊆ B(E) be the subspace of bounded
deterministic processes. Clearly H satisfies the conditions of the theorem.
Next take K to be the family of all continuous and adapted processes. By
assumption, these processes are deterministic and hence also bounded, so that
K ⊆ H. Since K is closed under multiplication, the monotone class theorem
implies that H contains all bounded σ(K)-measurable functionals. That is,
all bounded predictable processes are deterministic. To conclude that any
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predictable process is deterministic, simply take some predictable X, and
note that X := limn→∞X ∧ n is the (pointwise) limit of bounded predictable
processes. This completes the proof.

Exercise 7.3 (From σ-martingale to local martingale) Argue in detail that every
continuous σ-martingale null at zero is a local martingale null at zero.

Can you find an example where it is not a supermartingale?

Solution 7.3 Let X be a continuous σ-martingale null at 0, so that X = ψ •M
for a d-dimensional local martingale M = (M i)16i6d and a positive one-dimensional
predictable integrand ψ ∈ L(M). Define the sequence of stopping times (τn)n∈N
by

τn := inf{t > 0 : |Xt|∞ > n},

where | · |∞ denotes the supremum norm on Rd (i.e. |(x1, . . . , xd)|∞ = maxi |xi|}).
Since X is RCLL, it is bounded on compact intervals (with the bounded depending
on the trajectory X·(ω), hence on ω), and thus τn ↑ T stationarily. Moreover, since
X is null at zero, we have for each n ∈ N that

Xτn = 1K0,τnK •X = 1K0,τnK • (ψ •M) = (1K0,τnKψ) •M.

In particular, Xτn is a stochastic integral against the local martingale M . Moreover,
Xτn is bounded (by n) because X is continuous, and so the Ansel–Stricker theorem
implies that Xτn is a local martingale. As bounded local martingales are martingales,
we have that Xτn is martingale for each n ∈ N, and hence X is a continuous local
martingale null at zero. (Alternatively, one can use that (M0,loc)loc =M0,loc.)

To find an example where X is not a supermartingale, take M to be any local
martingale that is not a supermartingale (e.g. −S from Exercise 4.1), and then
let ψ ≡ 1 ∈ L(M). Then X = M − M0, which is not a supermartingale by
assumption.

Exercise 7.4 (Theorem 4.5) Let S be a semimartingale. Prove (3) =⇒ (1) in
Theorem 4.5, i.e. the existence of an equivalent σ-martingale measure for S implies
(NFLVR).

Solution 7.4 We give two proofs. The first shows that S satisfies (NFLVR) under
Q directly using the definition. The second takes advantage of Proposition 4.3 and
shows that S satisfies (NUPBR) instead.

Solution 1. We need to show CL
∞
∩L∞+ = {0}, where we recall C := (Gadm−L0

+)∩L∞.
So take some f ∈ CL

∞
∩L∞+ . Then there exists a sequence (fn) ⊆ C such that fn → f

Updated: November 14, 2024 3 / 4



Mathematical Finance, Fall 2024 Exercise Sheet 7

in L∞. As fn ∈ C, there exists some gn ∈ Gadm such that gn − fn ∈ L0
+. Since

f ∈ L∞+ , then for each n ∈ N, we have

−‖fn − f‖L∞ 6 fn 6 gn. (3)

Now suppose Q is an equivalent σ-martingale measure for S. In particular, Q is an
equivalent separating measure for S, and thus EQ[gn] 6 0 for each n ∈ N. So the
Fatou lemma together with (3) (which implies that the fn are uniformly bounded
from below) gives

EQ[f ] 6 lim inf
n→∞

EQ[fn] 6 0.

As f ∈ L∞+ , we conclude that f = 0 Q-a.s. and hence also f = 0 P -a.s., as
required.

Solution 2. By Proposition 4.3, it suffices to show that S satisfies (NA) and (NUPBR)
under Q. To show that S satisfies (NA), take ϑ ∈ Θadm with GT (ϑ) ∈ L0

+. Then
GT (ϑ) > 0 Q-a.s, and since Q is an equivalent separating measure for S, we have
EQ[GT (ϑ)] 6 0. This implies GT (ϑ) = 0 Q-a.s., and hence GT (ϑ) = 0 P -a.s. Hence
S satisfies (NA).

It remains to show that S satisfies (NUPBR) under Q, i.e. that

lim
n→∞

sup
ϑ∈Θ1

Q[|GT (ϑ)| > n] = 0.

To this end, note that for each ϑ ∈ Θ1 and integer n > 2, the 1-admissibility of ϑ
gives

Q[|GT (ϑ)| > n] = Q[GT (ϑ) > n],

and since GT (ϑ) + 1 > 0 Q-a.s., we can apply Markov’s inequality to get

Q[|GT (ϑ)| > n] 6 1
n+ 1EQ[GT (ϑ) + 1].

Again using that Q is an equivalent separating measure for S, we have EQ[GT (ϑ)] 6 0,
and hence

Q[|GT (ϑ)| > n] 6 1
n+ 1 .

We thus have

sup
ϑ∈Θ′

Q[|GT (ϑ)| > n] 6 1
n+ 1 −→ 0 as n→∞,

which gives the claim.

Updated: November 14, 2024 4 / 4


