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Exercise 7.1 (Admissibility at ezpiry) Let S be a semimartingale satisfying (NA),
and suppose U € Onam has Gr(Y¥) > —a P-a.s. for some a > 0. Show that G(9) > —a
P-a.s., i.e. that 1 is a-admissible.

Solution 7.1 Since G(¥) is right-continuous, it suffices to show that G;(9) > —a
P-a.s. for each t € (0,T). Suppose for a contradiction that there exists t € (0,7
with P[G(¥) < —a] > 0. Consider the integrand 1 that waits until after time ¢
to follow ¥ on the event {G;(¥) < —a}. That is, we define ¢ := V1¢,(9)<—a}x(t,7]-
Note that ¢’ is predictable, S-integrable and satisfies

G() = (G’(ﬁ) - G’t(ﬂ)) LG, (0)<—a}x(t,1)- (1)

In particular, we have
Gr(') = (Gr(W) = Gi()) L, y<-a) = (= a = Gi(¥)) g w)<—ay € LS\{0}.

Since ¥ € O,qm, there exists some ¢ > 0 such that G(J) > —c¢ P-a.s., and hence from
(1) we get

G') > —c+a,
so that ¥ € ©,qm. Note that we may assume ¢ > a so that —c +a = —(¢ — a) has
¢ —a > 0; indeed, if ¢ < a and G(¥) > —c, then G(¥) > —a so that 9 is already
a-admissible. We have thus shown that Gr(¢) € Gaam N LY \{0}, which contradicts
(NA). This completes the proof.

Exercise 7.2 (All gains are zero)

(a) Construct an example where S is a martingale, but G, = {0}. You may use
part (b).
(b) Show that if any continuous adapted process is deterministic, then so is any

predictable process.

Solution 7.2
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(a)

Let Z ~ N(0,1) be a standard normal random variable, and define the process
S = (St)ogth by

0 ifogt<T,
Sp = .
7 ift="T.

Clearly S is integrable. Consider the natural filtration F°. Since S is deter-
ministic for ¢ € [0,T), then F7 is trivial for ¢ € [0,7). In particular, for all
t €10,T) we have

E[Sr | ] = E[Sr] = E[Z] = 0= S,.
It follows that S is a martingale. It remains to show that G, = {0}.

Note that since F; is trivial for each t € [0, 7)), any adapted process must be
deterministic on [0,7"), and thus any adapted and left-continuous process must
be deterministic on [0,7]. The same then holds for any predictable process

(by part (b)).

Now take ¥ € O.qn,. Since 1 is predictable, it must be deterministic. So let
¢ :=Up. Since S is constant on [0,7"), we have

0 ifo<t<T,

2

Gt(ﬁ) = {

In particular, G7(9) = ¢Z ~ N(0, ¢?) is unbounded unless ¢ = 0 (in which case
Gr(v) =0). It follows from (2) that G7(9) € Gaam if and only if ¢ = 0, which
implies Gaam = {0}, as required.

Recall the monotone class theorem for functionals:

Fiz a set E, and let B(E) denote the family of bounded functionals f : E — R.
Suppose H C B(E) is a linear subspace of B(E) containing the constant
function 1 and satisfying the following condition:

if fi,f0,... € Hwith0 < f1 < fo<...and f:=1lim, o fn € B(EF), then
feH.

Then for any subset KK C H that is closed under multiplication (i.e. if f,g € K
then fg € K), H contains all bounded o(K)-measurable functionals.

In the theorem above, we take E := € x [0,T], so that B(F) denotes the
family of bounded processes. Let H C B(E) be the subspace of bounded
deterministic processes. Clearly H satisfies the conditions of the theorem.
Next take K to be the family of all continuous and adapted processes. By
assumption, these processes are deterministic and hence also bounded, so that
I C H. Since K is closed under multiplication, the monotone class theorem
implies that H contains all bounded o(K)-measurable functionals. That is,
all bounded predictable processes are deterministic. To conclude that any
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predictable process is deterministic, simply take some predictable X, and
note that X := lim,_,,, X A n is the (pointwise) limit of bounded predictable
processes. This completes the proof.

Exercise 7.3 (From o-martingale to local martingale)  Argue in detail that every
continuous o-martingale null at zero is a local martingale null at zero.

Can you find an example where it is not a supermartingale?

Solution 7.3 Let X be a continuous o-martingale null at 0, so that X =1y e M
for a d-dimensional local martingale M = (M");<;<4 and a positive one-dimensional
predictable integrand ¢ € L(M). Define the sequence of stopping times (7;,)nen
by

T, = inf{t > 0: | X¢|oo = n},

where | - |o denotes the supremum norm on R (i.e. |(z1,...,24)|e = max; |z;]}).
Since X is RCLL, it is bounded on compact intervals (with the bounded depending
on the trajectory X.(w), hence on w), and thus 7, T 7" stationarily. Moreover, since
X is null at zero, we have for each n € N that

XTn = 1]]0,7’n]] d X = 1]]0,7%]] * (1/} i M) = (1}]0,7'71]}’1#) ° M

In particular, X™ is a stochastic integral against the local martingale M. Moreover,
X7™ is bounded (by n) because X is continuous, and so the Ansel-Stricker theorem
implies that X™ is a local martingale. As bounded local martingales are martingales,
we have that X™ is martingale for each n € N, and hence X is a continuous local
martingale null at zero. (Alternatively, one can use that (Mo oc)i0c = Mo oc-)

To find an example where X is not a supermartingale, take M to be any local
martingale that is not a supermartingale (e.g. —S from Exercise 4.1), and then
let v =1 € L(M). Then X = M — M,, which is not a supermartingale by
assumption.

Exercise 7.4 (Theorem 4.5) Let S be a semimartingale. Prove (3) = (1) in
Theorem 4.5, i.e. the existence of an equivalent o-martingale measure for .S implies

(NFLVR).

Solution 7.4 We give two proofs. The first shows that S satisfies (NFLVR) under
@ directly using the definition. The second takes advantage of Proposition 4.3 and
shows that S satisfies (NUPBR) instead.

Solution 1. We need to show C~ NLY = {0}, where we recall C := (Gaam — LY ) N L.
So take some f € c* N L. Then there exists a sequence (f,,) C C such that f, — f
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in L. As f, € C, there exists some g, € Gaam such that g, — f, € LY. Since
f € LY, then for each n € N, we have

—[[fa = flle < fu < gn- (3)

Now suppose @ is an equivalent g-martingale measure for S. In particular, () is an
equivalent separating measure for S, and thus Fg[g,] < 0 for each n € N. So the
Fatou lemma together with (3) (which implies that the f,, are uniformly bounded
from below) gives

Eqlf] < liminf Eg[fy] < 0.

As f € LY, we conclude that f = 0 Q-a.s. and hence also f = 0 P-as., as
required.

Solution 2. By Proposition 4.3, it suffices to show that S satisfies (NA) and (NUPBR)
under Q. To show that S satisfies (NA), take ¢ € Opqm with Gr(9) € LY. Then
Gr(9) > 0 Q-a.s, and since @ is an equivalent separating measure for S, we have
Eo[Gr(V)] < 0. This implies Gr(¥) = 0 Q-a.s., and hence Gr(v) = 0 P-a.s. Hence
S satisfies (NA).

It remains to show that S satisfies (NUPBR) under @), i.e. that

lim sup Q[|Gr(¥)] = n| = 0.

n—o0 '19661

To this end, note that for each ¥ € ©! and integer n > 2, the 1-admissibility of ¥
gives

QlGr (V)| = n] = QG (V) = n],

and since Gr(¥) +1 > 0 Q-a.s., we can apply Markov’s inequality to get

1
n+1

QlGr (V)| = n] < Eq[Gr (V) +1].
Again using that () is an equivalent separating measure for S, we have Eg[Gr (V)] < 0,

and hence 1

n+1

QUGr(9)| = n] <
We thus have

sup QIGr(9)] > 1] < —

— 0 asn — oo,
9e®’ n+1

which gives the claim.
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