de-CH
utf-8
math math-format
Taylor polynomial of degree 3
dgl-05-02
multiple
168
randRangeExclude(-8, 8, [-1,0,1] )randRangeExclude(-8, 8, [-1,0,1, A, -A] )fractionReduce(-B, A)1AA*AA*A*A

Let us be given the function f with f(x) = e^{A x + B}.

Determine the Taylor polynomial at x_0 = X0 of degree three.

x\displaystyle \color{teal}T_3 (x) =A0 + " + " + A1 + " (x- " + X0 + ") + " + fractionReduce(A2,2) + " (x- " + X0 + ")^2 + " + fractionReduce(A3,6) + " (x- " + X0 + ")^3"

We are looking for \displaystyle \color{teal}T_3 (x) = f \left(X0 \right) + f'\left(X0\right )\left(x- X0\right ) + \frac 12 f''\left(X0\right )\left(x- X0\right )^2 + \frac 16 f'''\left(X0\right )\left(x- X0\right )^3.

We compute \displaystyle f\left(X0\right ) = 1, and we calculate the three missing values \displaystyle f'\left(X0\right ),\displaystyle f''\left(X0\right ) and \displaystyle f'''\left(X0\right ) as follows:

We first get \displaystyle f'(x) = A f(x),\displaystyle f''(x) = A*A f(x) and \displaystyle f'''(x) = A*A*A f(x).

Substituting, we obtain \displaystyle f'\left(X0\right ) = A1, f''\left(X0\right ) = A2 and \displaystyle f'''\left(X0\right ) = A3.

Substituting once again gives \displaystyle T_3(x) = A0+ A1 \left(x- X0\right ) + fractionReduce(A2,2) \left(x- X0\right ) ^2 + fractionReduce(A3,6) \left(x- X0\right ) ^3.